Preferred Language
Articles
/
alkej-137
Design a Security Network System against Internet Worms
...Show More Authors

 Active worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Engineering
Comparative Reliability Analysis between Horizontal-Vertical-Diagonal Code and Code with Crosstalk Avoidance and Error Correction for NoC Interconnects
...Show More Authors

Ensuring reliable data transmission in Network on Chip (NoC) is one of the most challenging tasks, especially in noisy environments. As crosstalk, interference, and radiation were increased with manufacturers' increasing tendency to reduce the area, increase the frequencies, and reduce the voltages.  So many Error Control Codes (ECC) were proposed with different error detection and correction capacities and various degrees of complexity. Code with Crosstalk Avoidance and Error Correction (CCAEC) for network-on-chip interconnects uses simple parity check bits as the main technique to get high error correction capacity. Per this work, this coding scheme corrects up to 12 random errors, representing a high correction capac

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 31 2020
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
THE IMPACT OF ETHICAL LEADERSHIP BEHAVIOR IN UNIVERSITY PERFORMANCE- STUDY EXPLORATORY AT SUMER UNIVERSITY: THE IMPACT OF ETHICAL LEADERSHIP BEHAVIOR IN UNIVERSITY PERFORMANCE- STUDY EXPLORATORY AT SUMER UNIVERSITY
...Show More Authors

The aim of the study was to find out the correlations and impact between the variable of ethical leadership behavior and university performance at Sumer University. Use the descriptive analytical method by adopting the questionnaire tool to collect data. The questionnaire was distributed electronically to 113 teachers at Sumer University and the response was from 105 teachers. The research results showed that there is a correlation and effect relationship between the search variables. In addition, the responding university does not have ethically defined standards in terms of performance of the work of the cadres working there. Finally, the research presented a set of recommendations aimed at tackling problems in the ethical lead

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Nostalgia Marketing on Consumers' Purchase Intention
...Show More Authors

The aim of this paper is to determine the effect of nostalgia marketing on consumers’ purchase intention and demographic factors. Nostalgia marketing is one of the marketing ideas that some organizations use it to attract customers by evoking memories or heritage in their minds. This method would affect the emotions and feelings of people, which may raise their desire to buy. The questionnaire was used as a tool for data collection, and it was distributed to a random sample of 512 individuals. A sample is a group of individuals who have seen small sculptures displayed in shops inside Babylon Mall in Baghdad. The small sculptures show the life of Baghdadis in the fifties and sixties of the last century. Statistical software was used for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Using Retrieved Sources for Semantic and Lexical Plagiarism Detection
...Show More Authors

     Plagiarism is described as using someone else's ideas or work without their permission. Using lexical and semantic text similarity notions, this paper presents a plagiarism detection system for examining suspicious texts against available sources on the Web. The user can upload suspicious files in pdf or docx formats. The system will search three popular search engines for the source text (Google, Bing, and Yahoo) and try to identify the top five results for each search engine on the first retrieved page. The corpus is made up of the downloaded files and scraped web page text of the search engines' results. The corpus text and suspicious documents will then be encoded as vectors. For lexical plagiarism detection, the system will

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Adaptive digital technique for discriminating between shadow and water bodies in the high resolution satellite imagery
...Show More Authors

This research presents a new algorithm for classification the
shadow and water bodies for high-resolution satellite images (4-
meter) of Baghdad city, have been modulated the equations of the
color space components C1-C2-C3. Have been using the color space
component C3 (blue) for discriminating the shadow, and has been
used C1 (red) to detect the water bodies (river). The new technique
was successfully tested on many images of the Google earth and
Ikonos. Experimental results show that this algorithm effective to
detect all the types of the shadows with color, and also detects the
water bodies in another color. The benefit of this new technique to
discriminate between the shadows and water in fast Matlab pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks
...Show More Authors

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Thu Mar 18 2010
Journal Name
Spe Projects, Facilities & Construction
Correlating Optimum Stage Pressure for Sequential Separator Systems
...Show More Authors
Summary<p>A study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.</p><p>A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t</p> ... Show More
View Publication
Scopus (15)
Crossref (13)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Transfer Learning Based Traffic Light Detection and Recognition Using CNN Inception-V3 Model
...Show More Authors

Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection
...Show More Authors

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF