Plagiarism is described as using someone else's ideas or work without their permission. Using lexical and semantic text similarity notions, this paper presents a plagiarism detection system for examining suspicious texts against available sources on the Web. The user can upload suspicious files in pdf or docx formats. The system will search three popular search engines for the source text (Google, Bing, and Yahoo) and try to identify the top five results for each search engine on the first retrieved page. The corpus is made up of the downloaded files and scraped web page text of the search engines' results. The corpus text and suspicious documents will then be encoded as vectors. For lexical plagiarism detection, the system will leverage Jaccard similarity and Term Frequency-Inverse Document Frequency (TFIDF) techniques, while for semantic plagiarism detection, Doc2Vec and Sentence Bidirectional Encoder Representations from Transformers (SBERT) intelligent text representation models will be used. Following that, the system compares the suspicious text to the corpus text. Finally, a generated plagiarism report will show the total plagiarism ratio, the plagiarism ratio from each source, and other details.
Plagiarism Detection Systems play an important role in revealing instances of a plagiarism act, especially in the educational sector with scientific documents and papers. The idea of plagiarism is that when any content is copied without permission or citation from the author. To detect such activities, it is necessary to have extensive information about plagiarism forms and classes. Thanks to the developed tools and methods it is possible to reveal many types of plagiarism. The development of the Information and Communication Technologies (ICT) and the availability of the online scientific documents lead to the ease of access to these documents. With the availability of many software text editors, plagiarism detections becomes a critical
... Show MoreIn the task of detecting intrinsic plagiarism, the cases where reference corpus is absent are to be dealt with. This task is entirely based on inconsistencies within a given document. Detection of internal plagiarism has been considered as a classification problem. It can be estimated through taking into consideration self-based information from a given document.
The core contribution of the work proposed in this paper is associated with the document representation. Wherein, the document, also, the disjoint segments generated from it, have been represented as weight vectors demonstrating their main content. Where, for each element in these vectors, its average weight has been considered instead of its frequency.
Th
... Show MorePlagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThe present study aims at identifying the styles, procedures of Iraqi universities to avoid plagiarism and evaluate these steps, also to evaluate the form prepared by the Directory of Scientific Supervision and Evaluation, Ministry of Higher Education and Scientific Research. The study uses documentary style, 150 teachers in the following colleges (Education Ibn Rushd, Languages and Arts) in university of Baghdad whom already used the aforementioned list were the sample of the study and they asked to give their opinions about the list.The study consists of five sections, first one deals with general view, second explains plagiarism and its types, shapes and reasons,third tackles with ways of detecting plagiarism, its programs, consequences
... Show MoreA rapid growth has occurred for the act of plagiarism with the aid of Internet explosive growth wherein a massive volume of information offered with effortless use and access makes plagiarism the process of taking someone else’s work (represented by ideas, or even words) and representing it as other's own work easy to be performed. For ensuring originality, detecting plagiarism has been massively necessitated in various areas so that the people who aim to plagiarize ought to offer considerable effort for introducing works centered on their research.
In this paper, work has been proposed for improving the detection of textual plagiarism through proposing a model for can
... Show MoreIt is not often easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom, a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.