In the present paper a low cost mechanical vibration shaker of rotating unbalanced type with uniaxial shaking table was designed and constructed in an attempt to provide opportunities for experimental testing and application of vibration in experimental modal analysis, stress relief of weldments, effect of vibration on heat transfer and seismic testing of civil engineering structures. Also, it provides unexpressive solution to enhance the knowledge and technical skills of students in mechanical vibration laboratory. The shaker consists of a five main parts shaker frame, shaker table, flexible support, drive motor, and eccentricity mechanism. The experimental results show that the amplitude of the shaker is increased with increasing the frequency ratio and the maximum value was attained near the resonance condition. Also, the magnitude of amplitude is increased with increasing the eccentric mass and eccentricity values. A reasonable agreement with theoretical results shows that the shaker can be used with reliable results in vibration testing purposes. Also, in this paper, the frequency ranges of the shaker were determined for constant displacement and for constant acceleration tests to satisfy all the frequency limitation requirements of the mechanical shaker.
This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron
... Show MoreConcrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
Existing literature suggests that construction worker safety could be optimized using emerging technologies. However, the application of safety technologies in the construction industry is limited. One reason for the constrained adoption of safety technologies is the lack of empirical information for mitigating the risk of a failed adoption. The purpose of this paper is to fill the research gap through identifying key factors that predict successful adoption of safety technologies.
In total, 26 key technology adoption predictors
Delays occur commonly in construction projects. Assessing the impact of delay is sometimes a contentious
issue. Several delay analysis methods are available but no one method can be universally used over another in
all situations. The selection of the proper analysis method depends upon a variety of factors including
information available, time of analysis, capabilities of the methodology, and time, funds and effort allocated to the analysis. This paper presents computerized schedule analysis programmed that use daily windows analysis method as it recognized one of the most credible methods, and it is one of the few techniques much more likely to be accepted by courts than any other method. A simple case study has been implement
In this research the effect of cooling rate and mold type on mechanical properties of the eutectic
and hypoeutectic (Al-Si) alloys has been studied. The alloys used in this research work were (Al- 12.6%Si
alloy) and (Al- 7%Si alloy).The two alloys have been melted and poured in two types of molds with
different cooling rates. One of them was a sand mold and the other was metal mold. Mechanical tests
(hardness, tensile test and impact test) were carried out on the specimens. Also the metallographic
examination was performed.
It has been found that the values of hardness for the alloys(Al-12.6%Si and Al-7%Si) which poured in
metal mold is greater than the values of hardness for the same alloy when it poured in a heated
Purpose: The aim of this study was to gain insight into causes of time delays and cost overruns in a selection of thirty case projects in Iraq. Delay factors have been studied in many countries/contexts, but not much data exists from countries under the conditions characterizing Iraq during the last 10-15 years.Design/methodology/approach: A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. For the case of the study, the participants in the projects provided data about the projects through the data collection tool distributed through the questionnaire directed to them. Statistical data analysis was used to build statistical relationships between time and cost d
... Show MoreThis research sheds light on the morphological construction of kitchen terms in Hebrew language, especially methods of derivation, by offering an extensive review of the most important methods of morphological derivation. The field of kitchen terms is a fertile and rich field, where we see daily production of new kitchen tools which require suitable names with specific meanings. Morphologically, the research interested in methods of morphological derivation. So as to know and identify the common and effective methods to derive the kitchen terms in Hebrew language, in addition to put a special glossary of these terms. The research found that most of the kitchen terms were derived according to the methods of derivation prevailing in Hebrew la
... Show MoreThe government of Iraq states that despite the massive amounts invested in the power generating sector, the country has been plagued by power outages for more than three decades; One of the most common sources of the problem and significant impact on the waste of public funds in contractual processes. The Ministry of Planning issued the sectorial
specialized standard bidding documents (SSBD) of Design, Supply, and Installation of the Electromechanical Works (DSIoEW), which is primarily designed to support the Ministry of Electricity (MoE) by developing economic projects to improve the contractual process that led to raisings Iraqi electricity generation field. The research evaluates the impact of
applying the SSBD-DSIoEW for
Objective: A descriptive design, using the methodological approach, is carried throughout the present
study from April 1st 2012 to May 20th 2013 to construct the school physical environment standardized
features tool.
Methodology: An instrument of (141) item is constructed for the purpose of the study. A purposive
sample of (44) school; (22) public and (22) private ones is selected. Content Validity of the instrument is
determined through the use of panel of (11) expert who are specialists in Community Health Nursing and
Community Medicine. Internal consistency reliability, using the split-half technique, is employed through
the computation of Cronbach alpha correlation coefficient of (0.93) for internal scale. Data