Preferred Language
Articles
/
alkej-115
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 28 2015
Journal Name
Al-khwarizmi Engineering Journal
Interaction of Corrosion-Cumulative Fatigue and Shot Peening of 1100-H12 Aluminum Alloy
...Show More Authors

Abstract

    Corrosion-fatigue occurs by the combined actions of cyclic loading and corrosive environment. The effect of shot peening on cumulative corrosion-fatigue life of 1100-H12 Al alloy was investigated. Before fatigue testing, specimens were submerged in 3.5%NaCl solution for 71 days. Constant fatigue tests were performed with and without corrosive environment. Cumulative corrosion-fatigue tests were also carried out in order to determine the fatigue life before and after shot peening. The constant fatigue life was significantly reduced due to corrosive environment and the endurance fatigue limit was reduced by 13% compared with dry fatigue. In case of shot peening the cumul

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
2018 Ieee/acs 15th International Conference On Computer Systems And Applications (aiccsa)
Utilizing Hopfield Neural Network for Pseudo-Random Number Generator
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 27 2019
Journal Name
Journal Of Low Power Electronics And Applications
Tolerating Permanent Faults in the Input Port of the Network on Chip Router
...Show More Authors

Deep submicron technologies continue to develop according to Moore’s law allowing hundreds of processing elements and memory modules to be integrated on a single chip forming multi/many-processor systems-on-chip (MPSoCs). Network on chip (NoC) arose as an interconnection for this large number of processing modules. However, the aggressive scaling of transistors makes NoC more vulnerable to both permanent and transient faults. Permanent faults persistently affect the circuit functionality from the time of their occurrence. The router represents the heart of the NoC. Thus, this research focuses on tolerating permanent faults in the router’s input buffer component, particularly the virtual channel state fields. These fields track packets f

... Show More
View Publication
Scopus (14)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Corrosion Inhibition Efficiency Investigation of Yttrium Oxide Nanoparticles Coated on Carbon Steel Alloy
...Show More Authors

Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (26)
Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Desalination And Water Treatment
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed
...Show More Authors

Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Modeling sequential preparation with rheumatoid tonsils in Nineveh for the period 2004-2009
...Show More Authors

Abstract
             In this research will be treated with a healthy phenomenon has a significant impact on different age groups in the community, but a phenomenon tonsillitis where they will be first Tawfiq model slope self moving averages seasonal ARMA Seasonal through systematic Xbox Cengnzla counter with rheumatoid tonsils in the city of Mosul, and for the period 2004-2009 with prediction of these numbers coming twelve months, has found that the specimen is the best representation of the data model is the phenomenon SARMA (1,1) * (2,1) 12  from the other side and explanatory variables using a maximum temperature and minimum temperature, sol

... Show More
View Publication Preview PDF
Crossref