Preferred Language
Articles
/
alkej-113
Experimental Evaluation and Finite Element Simulation to Produce Square Cup by Deep Drawing Process
...Show More Authors

Deep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study the effect of some parameters such as die profile radius, radial clearance between die and punch, blank diameter on the length and thickness  distributions on the cup, dynamic-explicit (ANSYS11) code based on finite element method is utilized to simulate the square deep drawing operation. Experiments were done for comparison and verification the numerical predictions. effective square cup with less defects and acceptable thickness distributions were produced in this study. It is concluded  the most thinning appear in the corner cup due to excessive stretching occur in this region and also it is found the cup thickness and height prediction by numerical analysis and in general in harmony with experimental analysis.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Simulation of one Dimensional Photoacoustic Imaging
...Show More Authors

The present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Magnetic solar surface flux transport simulation
...Show More Authors

In this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Nature Environment And Pollution Technology
The Kinetic Model for Decolourization of Commercial Direct Blue 2 Azo Dye Aqueous Solution by the Fenton Process and the Effect of Inorganic Salts
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Mar 23 2021
Journal Name
International Journal Of Energy Research
Localized heating element distribution in composite metal foam‐phase change material: Fourier's law and creeping flow effects
...Show More Authors

View Publication
Scopus (42)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Pakistan Association Of Dermatologists
Zinc as an essential element for normal immune reactions and as a therapeutic agent for autoimmune diseases
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Fri Oct 14 2022
Journal Name
المجلة العراقية لعلوم التربة
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref