Preferred Language
Articles
/
alkej-113
Experimental Evaluation and Finite Element Simulation to Produce Square Cup by Deep Drawing Process
...Show More Authors

Deep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study the effect of some parameters such as die profile radius, radial clearance between die and punch, blank diameter on the length and thickness  distributions on the cup, dynamic-explicit (ANSYS11) code based on finite element method is utilized to simulate the square deep drawing operation. Experiments were done for comparison and verification the numerical predictions. effective square cup with less defects and acceptable thickness distributions were produced in this study. It is concluded  the most thinning appear in the corner cup due to excessive stretching occur in this region and also it is found the cup thickness and height prediction by numerical analysis and in general in harmony with experimental analysis.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Evaluation of Bearing Capacity of Strip Foundation Subjected to Eccentric Inclined Loads Using Finite Element Method
...Show More Authors

In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical) and consequently reduces the bearing capacity.

Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation), the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B) ranging from (0-1) has been explored. The results display that, the bearing capacity of st

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Treatment of Waste Extract Lubricating Oil by Thermal Cracking Process to Produce Light Fractions
...Show More Authors

This work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 28 2019
Journal Name
Al-khwarizmi Engineering Journal
Treatment of Waste Extract Lubricating Oil by Catalytic Cracking Process to Produce Light Fractions
...Show More Authors

The catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Experimental Studies and Finite Element Modeling of Piles and Pile Groups in Dry Sand under Harmonic Excitation
...Show More Authors

Foundations supporting reciprocating engines, radar towers, turbines, large electric motors, and generators, etc. are subject to vibrations caused by unbalanced machine forces as well as the static weight of the machine. If these vibrations are excessive, they may damage the machine or cause it not to function properly. In the case of block foundation, if changes in size and mass of the foundation do not lead to a satisfactory design, a pile foundation may be used. In this study, the dynamic response of piles and pile Groups in dry sand is investigated experimentally. The analysis involves the displacement response under harmonic excitation. In addition, a numerical modeling by using finite element method with a three-dimensional formula

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems
...Show More Authors

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Simulation of Temperature Distribution in TIG Spot Welds of (Al-Mg) Alloy Using Finite Element Method
...Show More Authors

      This research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot) for the aluminum-magnesium alloy type  (5052-O).

      The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4) is presented  the temperature distribution in a circular weld pool and the weld pool penetration (depth of welding) through the top sheet ,across the interface into the lower sheet forming a weld spot.   &nbs

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Experimental Evaluation of the Strut-and-Tie Model Applied to Deep Beam with Near-Load Openings
...Show More Authors

It is commonly known that Euler-Bernoulli’s thin beam theorem is not applicable whenever a nonlinear distribution of strain/stress occurs, such as in deep beams, or the stress distribution is discontinuous. In order to design the members experiencing such distorted stress regions, the Strut-and-Tie Model (STM) could be utilized. In this paper, experimental investigation of STM technique for three identical small-scale deep beams was conducted. The beams were simply supported and loaded statically with a concentrated load at the mid span of the beams. These deep beams had two symmetrical openings near the application point of loading. Both the deep beam, where the stress distribution cannot be assumed linear, and the ex

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study and Numerical Simulation of Sheet Hydroforming Process for Aluminum Alloy AA5652
...Show More Authors

 Abstract   

Lightweight materials is used in the sheet metal hydroforming process,  because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution)  with results  of finite element analyses (FEA)  (ANSYS 11)  for aluminum alloy (AA5652) sheets with  thickness (1.2mm) before heat treatm

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Finite Element Analysis of UHPC Corbels
...Show More Authors

   Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws  and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
 

View Publication Preview PDF