The aim of this research is to construct a three-dimensional maritime transport model to transport nonhomogeneous goods (k) and different transport modes (v) from their sources (i) to their destinations (j), while limiting the optimum quantities v ijk x to be transported at the lowest possible cost v ijk c and time v ijk t using the heuristic algorithm, Transport problems have been widely studied in computer science and process research and are one of the main problems of transport problems that are usually used to reduce the cost or times of transport of goods with a number of sources and a number of destinations and by means of transport to meet the conditions of supply and demand. Transport models are a key tool in logistics and supply chain management to reduce costs, times or improve services, In this study Three algorithms were proposed to solve the transport matrix (Range(R), Arithmetic Mean(AM), Cost Slop(CO)), and this algorithm must meet the requirements of problem restrictions and goals to reach good solutions, and may sometimes be the optimal solutions so we will adopt any solutions that are the best and optimal through our findings in the application of heuristic algorithms and based on the final results can be based on the heuristic method., The research concluded that the best reasoning method is the (arithmetic mean(AM)) because it gave the best results in reducing the total (cost and time) before and after the optimization method (MODI), It also gave the cost inclination method less total costs and time higher than the method of arithmetic mean After conducting the optimization method(MODI)
The acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreThe aqueous and methanol extracts of Salvia officinals and Salix acmoplylla traditionally used for the treatment of infections disease were tested for their active against gram positive and gram negative bacteria isolated from wound infection culture using the broth dilution and disc diffusion melhod. Results of this study revealed the prescence of phytochemical which were active against gram positive and negative bacteria. Methanol extracts of both plants showed the highest activity other the aqueous extract. The minimum inhibitory concentration (MIC) of the aqueous extracts on the test organism was 25- 100 mg\ml,while that of the methanol extract was ranged betwee
... Show MoreBackground: Chronic obstructive pulmonary disease (COPD) is a progressive airflow limitation that is preventable but not curable. It is associated with persistent symptoms that cause a considerable burden on individual productivity at work, and daily activities, and reduced quality of life, also burdening the healthcare system and society. Objectives: The study aims to measure the burden of COPD on patients in terms of daily activities and work productivity. It also seeks to investigate some inflammatory biomarkers' levels and their correlation with selected outcomes. Patients and Methods: A cross-sectional study on 120 stable COPD patients who were diagnosed and treated according to the GOLD guidelines at Kirkuk General Hospital's
... Show MoreIn this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a
Background: Malnutrition during human growth affects the size of the tissues at different stages of life, body proportions, body chemistry, as well as quality and texture of tissues. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometric measurement involving tooth size dimensions. The aim of this study was to estimate the effect of nutrition on teeth size dimension measurements among students aged 15 years old. Materials and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 167 students aged 15 years (83 malnourished and 84 well-nourished). The assessment of nutritional status was done by using body mass
... Show MoreBackground: Dental implant considers a unique treatment option for the replacement of missing dentition. The new trend of implants is looking for materials which accelerate bone formation in bone implant interface and enhance osseointegration to provide immediate loading directly after placement and decrease the time period which is disturbs patients and uncomfortable. The aim of the study was to evaluate the effect of nano zirconium oxide (ZrO2) and nano hydroxyapatite (Hap) mixture coating of screw shaped commercially pure titanium (cpTi) implants on bond strength at the bone implant interface with torque removal test and histological analysis in comparison with non coated implants. Materials and methods: Forty screws were machined from c
... Show MoreThis study is a complementary one to an extended series of research work that aims to produce a thermodynamiclly stable asphalt –sulfur blend. Asphalt was physically modified wiht different percentages of asphaltenes , oxidized asphaltenes and then mixed with sulfur as an attempt to obtaine a stable compatible asphalt-sulfur blend. The homogeneneity of asphalt-asphaltenes[oxidized asphaltenes]-sulfur blends were studied microscopically and the results are prsented as photomicrographs. Generally more stable and compatible asphalt-sulfur blends were obtained by this treatment.