Quantum dots (QDs) of zinc sulfide (ZnS) was prepared by chemical reaction with different potential of hydrogen (pH) and used to fabricate organic quantum dot hybrid junction device. The optical properties of QDs were characterized by ultraviolet-visible (UV-Vis.) and photoluminescence (PL) spectrometer. The results show that the prepared QDs were nanocrystalline with defects formation. The energy gap (Eg)calculated from PL were 3.64, 3.53 and 3.35 eV for pH=8, 10 and 12 respectively. This decreasing of energy gaps is results of the effect the pH solution increases, which in turn leads to the shifted of the PL spectrum toward red shifted, which makes the energy bands at surface states are shallow bands. Fabrication of EL-device from ZnS QDs with different pH value was effective in efficient white light generation and can be the color of emerged light with different intensities.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThis study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreBackground: Porcelain veneers are under a great deal of stress which may lead to clinical failure as fracture or dettachment. This study examined whether different finishing lines and lingual shoulder preparations in the incisal area of the maxillary central incisor affect the bond of the porcelain veneers. Materials and methods: A two- dimensional finite element model was made. Location and magnitude of maximum Von Mises stresses were calculated in porcelain veneer. Six types of preparations were drawn as:incisal overlap of 0.5mm, 1mm and 1.5mm depth and lingual shoulder, and incisal overlap of 0.5mm, 1mm and 1.5mm depth without shoulder preparation. Results: Stress formation is maximum in the incisal edge region. All the lingual shoulder
... Show MoreBackground: Debonding orthodontic brackets and removal of residual bonding material from the enamel surface include critical steps that may cause enamel damage. The aim of the present study was to evaluate and compare the site of bond failure and enamel surface damage after debonding of three types of esthetic brackets (composite, ceramic, sapphire) bonded with light cure composite and resin-modified glass ionomer adhesive. Materials and methods: Seventy two maxillary premolars teeth were divided into three groups each group consisted of 24 teeth according to the type of brackets. Each group was subdivided into two subgroups (12 teeth for each) according to the bonding material that was used. After 7 days of bonding procedure, the brackets
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.