To produce Zinc Oxide NanoParticles, ZnO-NPs, different methods can be used. However, the utilization of Liquid-Phase Pulsed Laser Ablation, LP-PLA, methodology of three distinct environment of aqueous using pure zinc plate will be one of the approaches for this job. Thus, in this work, concentrates on the influence of the results after employing some changes on the environment in other words, the influence of the NPs size and/or the NPs availability/appearance. Cetyltrimethylammonium Bromide, CTAB, is one of the three surfactants that have been used in the water-based solution. That is, the Sodium Dodecyl Sulfate, SDS, besides the Distilled Water, DW, the three surfactants will be ready when the molarity of the DW is around 10− 3 M. The specifications of the employed laser are: 800 nm as a wavelength, radiating with pulses of 130 fs as a duration, which will be repeated every 1ms (1 kHz). That is, with these laser settings, the femtosecond Ti: Sapphire laser was generated to irradiate the zinc target, which attain ablation inside the aforementioned solution. Hence, according to the sort of the surfactant that has been employed in the experiment, different shades were introduced in the resultant solutions, this reveals that the NPs are appeared with various dimensions. The shadow that has been captured is the white color which ranges from foggy to milky. Note that in the experiment was utilized the UV-VIS spectroscopy test in order to evaluate and characterize the ZnO-NPs that were produced. The creation of discrete sizes of ZnO-NP was verified by the surface plasmon resonance (SPR) spectra, which displayed separate absorbance peaks. For instance, the CTAB surfactant was at 207 nm, for the SDS, it was at 212 nm, while for the DW environment, it was at 218 nm. Accordingly, it was found, using the Scanning Electron Microscopy, SEM, captured images of the created nanoparticles, that the CTAB surfactant introduces the most regular/small sizes with respect to that produced using the SDS, which gives uneven sizes and shapes. Furthermore, the NPs generated in DW formed agglomerations with diameters in the micro range and exhibited a combination of spherical and hexagonal forms. The production of ZnO-NPs was confirmed using Fourier Transform Infrared Spectroscopy (FTIR) analysis, which demonstrated absorption readings in the 435–445 cm− 1 range.
Visualization of subsurface geology is mainly considered as the framework of the required structure to provide distribution of petrophysical properties. The geological model helps to understand the behavior of the fluid flow in the porous media that is affected by heterogeneity of the reservoir and helps in calculating the initial oil in place as well as selecting accurate new well location. In this study, a geological model is built for Qaiyarah field, tertiary reservoir, relying on well data from 48 wells, including the location of wells, formation tops and contour map. The structural model is constructed for the tertiary reservoir, which is an asymmetrical anticline consisting of two domes separated by a saddle. It is found that
... Show MoreThe synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2[M(Ln)Cl2], (where: M = Mn (II), Co(II) and Ni(II)) and [M(Ln)], (where: M = Cu(II), Zn(II) and Cd(II); n =1-2, expect [Cu(HL2)Cl]) were isolated. The entity of ligands and
... Show MorePseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a model bacterium for studying virulence and bacterial social traits. While it can be isolated in low numbers from a wide variety of environments including soil and water, it can readily be found in almost any human/animal-impacted environment. It is a major cause of illness and death in humans with immunosuppressive and chronic conditions, and infections in these patients are difficult to treat due to a number of antibiotic resistance mechanisms and the organism’s propensity to form multicellular biofilms. One hundred twenty clinical samples and forty hospital environmental samples (various sources) were collected from hospitals in Baghdad city during the period from Oc
... Show MoreOne of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in
... Show MoreBackground: Klebsiella pneumoniae were considered as normal flora of skin, and intestine. It can cause damage to human lungs; the danger of this bacterium is related to exposure to the hospital surroundings. materials and methods: the detection of Klebsiella pneumoniae on morphological and biochemical tests and then assured with VITEK 2 system. Resistance to antibiotics was determined by Kirby-Baeur method. And genotyping of IMP-1 in isolates was done by PCR technique, then biofilm formation was identified by Micro titer plate method. Results: The present study included a collecting of 50 specimens from different clinical specimens, (blood 40%, urine 30%, sputum 20%, wound infection 10%); 10 isolates were identified as K
... Show MoreCarbon dioxide geo-sequestration (CGS) into sediments in the form of (gas) hydrates is one proposed method for reducing anthropogenic carbon dioxide emissions to the atmosphere and, thus reducing global warming and climate change. However, there is a serious lack of understanding of how such CO2 hydrate forms and exists in sediments. We thus imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via x-ray micro-computed tomography in 3D in-situ. A substantial amount of gas hydrate (∼17% saturation) was observed, and the stochastically distributed hydrate clusters followed power-law relations with respect to their size distributions and surface area-volume relationships. The layer-
... Show MoreTriticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer wa
... Show MoreThis study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500 rp
... Show MoreThis study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500
... Show More