Consider a simple graph on vertices and edges together with a total labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say defined by for all where Also, the value is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by and is the least for which G admits edge irregular h-labeling. In this article, for some common graph families are examined. In addition, an open problem is solved affirmatively.
The search is an application for one of the problems of mathematics in the computer; as providing construction and design of a major program to calculate the inverse permutations of the symmetric group Sn , where 1 ≤ n ≤ 13; using some of the methods used in the Number Theory by computer . Also the research includes design flow chart for the main program and design flow chart for the program inverse permutations and we give some illustrative examples for different symmetric groups and their inverse permutations.
Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand
... Show MoreIn this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.
With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreIn this work, we introduced and studied a new kind of soft mapping on soft topological spaces with an ideal, which we called soft strongly generalized mapping with respect an ideal I, we studied the concepts like SSIg-continuous, Contra-SSIg-continuous, SSIg-open, SSIg-closed and SSIg-irresolute mapping and the relations between these kinds of mappings and the composition of two mappings of the same type of two different types, with proofs or counter examples
Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.
Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
In this paper, the impact of magnetic force, rotation, and nonlinear heat radiation on the peristaltic flow of a hybrid bio -nanofluids through a symmetric channel are investigated. Under the assumption of a low Reynolds number and a long wavelength, the exact solution of the expression for stream function, velocity, heat transfer coefficient, induced magnetic field, magnetic force, and temperature are obtained by using the Adomian decomposition method. The findings show that the magnetic force contours improve when the magnitude of the Hartmann number M is high and decreases when rotation increases. Lastly, the effects of essential parameters that appear in the problem are analyzed through a graph. Plotting all figures is done using the
... Show More