The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low and almost constant from 102 Hz to 104 Hz, has a slight increase after 104 Hz, and obtain relaxation peaks approximately between 105 and 106 Hz. A sharp increase in dielectric constant and dissipation factors is observed in epoxy (Ep)/CF composites with 30 vol.% of SiC. The increase in electrical conductivity of composites may result from the increased chain ordering by annealing effect. The electrical conductivities of the Ep/CF composites are decreasing with the increasing volume fraction of SiC. It is attributed to the introduction of insulating SiC. The glass transition temperature ( T g) of the Ep/CF-30 vol.% SiC composite was 352 C, which was higher than other composites. The decomposition temperature at 5% weight loss, decomposition temperature at 10% weight loss, and maximum decomposition temperature of the Ep/CF-30 vol.% SiC composite were about 389.5°C, 410.7°C, and 591°C, respectively, and were higher than pure epoxy and other composites. A higher thermal conductivity of 1.86 W (m K)−1 could be achieved with 30 vol.% SiC/CF hybrid fillers, which is about nine times higher than that of native epoxy resin of 0.202 W (m.K)−1.
It was found that there was a significant correlation between all tests of the mechanical and electrical activity of the heart (systolic force FC, stroke volume SV, end-diastolic volume, EF volume, and left ventricular volume during diastole LVDD) with the test of the oxygen-phosphating energy system (Markaria). - As safe (Margaria-Kalamen( It was found that there is a significant correlation between all tests of the mechanical and electrical activity of the heart (myocardial systolic force FC, stroke volume SV, end-diastolic volume EDV, and the percentage of heart pumpingEF blood, and left ventricular volume during diastole (LVDD) with the Lactational Oxygen Energy System Test (Wingate Test 30 Second(
Single Walled Carbon nanotubes (SWCNTs), as nano-needle structures, are good candidates as nanocarrier delivery systems that carry drug to the site of action. They are good due to their unique pharmaceutical properties. Teniposide is an anticancer drug, which is widely used, but it has a problem of low solubility. In this study, to improve the properties of carbon nanotubes, pre-functionalization of carbon nanotubes via carboxylation with strong acids has been performed and then functionalized through attaching them to the polymer and copolymer. Concurrently, a proper polymer-copolymer combination has been selected by the UV-Visible spectrometer at 880nm. It is selected based on the qualitative dispersibility analysis, the visual observa
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MorePharmaceutical-instigated pollution is a major concern, especially in relation to aquatic environments and drugs such as meropenem antibiotics. Adsorbents, such as multi-walled carbon nanotubes, offer potential as means of removing polluting meropenem antibiotics and other similar compounds from water. In order to evaluate the effectiveness of multi-walled carbon nanotubes in this capacity, various experimental parameters, including contact time, initial concentration, pH, temperature and the dose of adsorbent have been investigated. The Langmuir and the Freundlich isotherm models have been used. The data obtained using a modified Langmuir model have been consistent with the experimental ones; the best pH value has been obtained to have the
... Show MoreThis study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
Phenylthiourea (PHTU),was tested as inhibitor for the corrosion of low carbon steel in different HCI acid concentration by mass loss ,and polarization measurements .it was found that (PHTU) is a good inhibitor for the corrosion of low carbon steel in 1,3,and 5N HCI solution ,and its inhibition efficiency (0) increases with its concentration and attains approximately 97% at l g/I .polarization curves indicate that (PHTU) acts as an anodic type inhibitor .the inhibitor was adsorbed on the low carbon steel surface according to the Langmuir adsorption isotherm model. Results show that the rate of corrosion of low carbon steel increased with increasing temperature o
... Show MoreThe aim of this research is to calculate mass transfer coefficient, kd, during cathodic protection of low carbon steel in neutral seawater (3.5% W/V NaCl in distilled water with pH = 7). Two types of cathodic protection were used:
First: Sacrificial anode cathodic protection (SACP) were a pipeline of steel carrying seawater using zinc as a sacrificial anode and with variable temperatures ranged (0 – 45oC) and volumetric flow rate ranged (5 – 900 lit/hr). It was found that the kd increases with increasing temperature and volumetric flow rate of seawater, where kd ranged (0.24×10-6 – 41.6×10-6 m/s).
Second: Impressed current cathodic pr
... Show MoreThe inhibitive power of Polyvinyl Alcohol (PVA) was investigated toward the corrosion of carbon steel in 0.2N H2SO4 solution in the temperature range of 30-60˚C and PVA concentration range of 150-2000 ppm.
The corrosion rate was measured using both the weight loss and the electrochemical techniques. The weight loss results showed that PVA could serve as a corrosion inhibitor but its inhibition power was found to be low for the corrosion of carbon steel in the acidic media. Electrochemical analysis of the corrosion process of carbon steel in an electrochemical corrosion cell was investigated using 3-Electrode corrosion cell. Polarization technique was used for carbon steel corrosion in 0.2N H