Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The experiment showed the functional working principle of the MR valve. In conclusion, the MR valve proved to be effective in controlling the direction and speed of hydraulic actuators proportionally. The proposed new design has the potential to reduce the complexity of directional control valves in the future.
The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed
... Show MoreThe heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show MoreAbstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show MoreBased on Lyapunov exponent criterion, the aircraft lateral-directional stability during critical flight cases is presented. A periodic motion or limit cycle oscillation isdisplayed. A candidate mechanism for the wing rock limit cycle is the inertia coupling between an unstable lateral-directional (Dutch roll) mode with stable longitudinal (short period) mode. The coupling mechanism is provided by the nonlinear interaction of motion related terms in the complete set equations of motion. To analyze the state variables of the system, the complete set of nonlinear equations of motion at different high angles of attack are solved. A novel analysis including the variation of roll angle as a function of angle of attack is proposed. Furthermore
... Show MoreBackground: Joint hypermobility was first mentioned by Hippocrates as an isolated feature, when he described the Celts' Incapacity to Pull a Bowstring or Throw a Dart, Due to The Slackness of Their Limbs
Objective: to determine the prevalence of mitral valve prolapse(MVP)in patients with benign hypermobility syndrome (BJHS).
Type of the study: Cross –sectional study.
Methods: Ninety patients with BJHS were included in this study. Full cardiological assessment was done for all of them, which include clinical examination, electrocardiography and echocardiography. Cardiac assessment was done for another sixty age and sex matched (
... Show Moresensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreBackground: Mitral valve stenosis is a condition in which the hearts mitral valve is narrowed (stenosis), This narrowing blocks the valve from opening properly obstructing blood flow through the heart and the rest of the body and this causes changes in physical parameters (resistance and conductance). Aim of the study: To assess the changes in the physical parameters in mitral valve stenosis disease in different gender and age by using Doppler ultrasound. Methods : The examination of patients at the Division of Echo - at the Iraqi Center for Heart Disease in Medical City for surgery specialist - Baghdad - Iraq, during(February2009 till November2010). The current study included fifty eight cases containing (27 males and 31 females) ages rang
... Show More