This research is a result of other studies made about the iraqi public and its relationship with different states institutions, until recently, such studies were almost non-existent. The main characteristic that distinguishes scientific research is that it involves a specific problem that needs to be studied and analysed from multiple aspects. What is meant by identifying the problem, is to limit the topic to what the researcher wants to deal with, rather than what the title suggests as topics which the researcher doesn’t want to deal with. The problem of this research is the absence of thoughtful and planned scientific programs to build a positive mental image of the institutions of the modern state in general and the House of Representatives in particular. Especially since the Iraqi citizens are not yet used to the existence of parliamentary life based on democratic foundations. Moreover, the relationship between the previous parliaments and the public has passed through a crisis of confidence as a result of the inability of these parliaments to perform their duties according to what the public wants, which may adversely affect the public's image of the current parliament. Also, the House of Representatives did not succeed during the first legislative term of its era in providing what the masses expected of it, this forced the Presidency of the Council to extend the legislative term for an additional month. If the research problem is concerned with answering questions raised by the researcher or with testing hypotheses dictated by the research requirements to achieve its objectives, this research tries to test a set of zero hypotheses based on the assumption that the results came from one community, and therefore there are no differences in the answers of the respondents.
The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreThis work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreThis study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod
... Show More