Embracing digital technological advancements in media and communication has led government entities to adopt communication practices fully aligned with the digital and networked system in government communication. Traditional media practices within the government environment increasingly rely on the ability to utilize digital tools and systems for content creation, communication, evaluation, and the management of the entire communication process within an electronic and intelligent framework for government services. Naturally, this transformation has caught the attention of communication and public relations researchers worldwide, as the digital and networked aspects of government communication now form an intellectual and theoretical dimension that cannot be underestimated in studying government communication practices.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this paper we introduce a new class of degree of best algebraic approximation polynomial Α,, for unbounded functions in weighted space Lp,α(X), 1 ∞ .We shall prove direct and converse theorems for best algebraic approximation in terms modulus of smoothness in weighted space
In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
This study was performed at Nuclear Radiation Hospital in Baghdad for the period from
January 2011 to May 2011. 44 Blood samples were collected from patients suffered lung and
bladder cancer and 24 samples as healthy control individuals.
Routine liver functions tests were studied by measuring S.GPT, S.GOT and Kidney
function was evaluated by estimation of blood urea and creatinine in serum samples of
individuals studied.
It was observed that the incidence of lung and bladder cancer was higher in males than
females patients ( male 81.82 %, 72.73%, female18 .18%, 27.27% respectively).
Insignificant difference was noted among age of lung and bladder cancer patients
compared with control group. The results
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.