Electronic learning was used as a substitute method for learning during the COVID-19 pandemic to conduct scientific materials and perform student assessment; this study aimed to investigate academic staff opinions toward electronic education. A cross-sectional study with a web-based questionnaire distributed to academic staff in different medical colleges in Iraq. After de-identification, data were collected and analyzed with statistical software to determine the significance between variables. A total of 256 participants were enrolled in the study: 83% were not satisfied or neutral to online learning, 80% showed a poor benefit from delivery of the practical electronic knowledge and 25% for theoretical sessions with a significant difference. After the era of COVID-19, 75% of participants don't recommend electronic learning for delivering practical knowledge, while only 45% don't recommend it for delivering theoretical knowledge. Participants acknowledged the low genuine attendance, virtual lectures, and little student interest in scientific materials with a percent of 56% and 61% of participants respectively. They agreed that efficacy of daily student assessment and electronic exams were poor with 60.1% and 80% of participants' opinions, respectively. 56% agreed the electronic assessment could not discover students cheating on the exam. The unplanned and rapid transition to electronic learning presented challenges at all academic levels. Not much information on the best practices was available to guide such transitions. The lack of social interaction, requirement for self-motivation, time management skills, the inaccessibility to others and the unavoidability of cheating and focusing on theory may all negatively impact the educational process.
Abstract:
The hotel sector is one of the most vital sectors exposed to risks, and the authorities concerned with control must take their active and influential role in putting the hotel sector on the right track and compatible with the internationally approved approaches, and the importance of auditing the performance of the hotel sector in light of the (Covid-19) pandemic is embodied in the fact that it gives a clear and realistic picture to the management and regulatory bodies about the performance and activities of this sector and the shortcomings and deviations that must be addressed, and also helps government decision makers to ob
... Show MoreThis study examines the analysis of the contents of the international public relations campaign in confronting the Covid-19 virus, which was taken from the (Your Health is a Trust) campaign for the World Health Organization, Iraq office.The research problem revolves around a main question that is, what are the axes of the campaign (Your Health is a Trust) established by the World Health Organization (Iraq office) in the prevention of Covid 19 virus?From this main question, several sub-questions emerged that this study answered on their Facebook page, and the communication activities of the Covid-19 awareness campaign. In the content analysis form, as this form included a number of main themes and main categoriesthat were adopted in analyzin
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThis study aimed to evaluate the effect of the COVID-19 outbreak on emergencies and pain among orthodontic patients attending a teaching hospital. The study was conducted among orthodontic patients receiving active orthodontic treatment or in a retention period at the College of Dentistry, University of Baghdad, Iraq. Their participation was voluntary, and they filled out an Arabic-translated questionnaire. The survey included general information, orthodontic problems, and a numerical rating scale for pain assessment. We used descriptive and inferential statistics (frequencies and intersecting frequencies), chi-square test and linear regression. Out of 75 orthodontic patients, only 54 (15 males and 39 females) were included in the s
... Show MoreThe aim of the current research is to reveal the effect of using brain-based learning theory strategies on the achievement of Art Education students in the subject of Teaching Methods. The experimental design with two equal experimental and control groups was used. The experimental design with two independent and equal groups was used, and the total of the research sample was (60) male and female students, (30) male and female students represented the experimental group, and (30) male and female students represented the control group. The researcher prepared the research tool represented by the cognitive achievement test consisting of (20) questions, and it was characterized by honesty and reliability, and the experiment lasted (6) weeks
... Show MoreCorona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN)
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show More