Solar hydrogen line emission has been observed at the frequency of 1.42 GHz (21 cm wavelength) with 3m radio telescope installed inside the University of Baghdad campus. Several measurements related to the sun have been conducted and computed from the radio telescope spectrometer. These measurements cover the solar brightness temperature, antenna temperature, solar radio flux, and the antenna gain of the radio telescope. The results demonstrate that the maximum antenna temperature, solar brightness temperature, and solar flux density are found to be 970 K, 49600K, and 70 SFU respectively. These results show perfect correlation with recent published studies.
The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
The Hopfield network is one of the easiest types, and its architecture is such that each neuron in the network connects to the other, thus called a fully connected neural network. In addition, this type is considered auto-associative memory, because the network returns the pattern immediately upon recognition, this network has many limitations, including memory capacity, discrepancy, orthogonally between patterns, weight symmetry, and local minimum. This paper proposes a new strategy for designing Hopfield based on XOR operation; A new strategy is proposed to solve these limitations by suggesting a new algorithm in the Hopfield network design, this strategy will increase the performance of Hopfield by modifying the architecture of t
... Show MoreThe Web Design Quality Index, known as WDQI, was applied to assess the quality of websites for six Iraqi universities, namely Basra University, Mosul, Muthanna, Samarra, Dijla University College, and Al-Isra University College. The results of the index showed that the universities of Basra and Dijla University College had the highest value, at 71.07 and 70.39, respectively. Its final evaluation metric was that the website of these two universities needed a slight improvement. As for the rest of the other universities, the final values of the index ranged from 64.72-69.71. When the final values of the index are displayed on the final evaluation scale, it appears that the websites of the four universities need many improvements. The study
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to
... Show More