Background Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and wear and corrosion resistance, influencing the biocompatibility of the surface. Such changes are brought in essentially because of the characteristic melting, evaporation and rapid solidification during laser surface remelting processes. Objectives This study was aimed at evaluating the electrochemical corrosion of commercial pure Titanium disks (CP Ti) and the Ti13Zr13Nb (Alloy) with a zigzag pattern of laser surface treatment. Materials and Methods a total of 40 discs of Cp Ti & 40 of Ti13Zr13Nb were fabricated. The surfaces of the test groups were treated with unique zigzag patterns using CNC Laser treatment on the texturing surfaces, the samples then are analyzed by using XRD, microhardness and electrochemical corrosion tests. Results The study revealed a proper increase in the surface hardness and corrosion resistance without crack formation or a dramatic change of the core substance of the CP Ti and Alloy disks. Conclusion The CNC laser is considered an effective and suitable method for surface texturing of CP Ti and Alloy for dental implantology.
Current research included preparation, characterization of some new chitosan- hydroxy benzaldehyde-Schiff bases with maleic anhydride. The present study aimed to the synthesis and characterization of novel chitosan Schiff base compounds using para- hydroxy benzaldeh and maleic anhydride. The derivative of the schiff-chitosan base, which is associated with different drugs, has been replaced with different amino and hydroxy drugs. The derivative is characterized by different analytical techniques. The results of FT-IR studies clearly indicate construction of the chief amine group in chitosan and the emergence of new bands that correspond to the association of maleic anhydride with the chitosan base. TGA, 1
... Show MoreBackground: Medicinal plants that possess antimicrobial and antioxidant properties have garnered significant attention for their role in maintaining food quality, improving safety, and impeding spoilage. They also can aid in controlling food contamination risks and augmenting the nutritional value of foods. Objective: The study aimed to obtain botanical extracts possessing antimicrobial capabilities and use them to inhibit the growth of molds and yeasts. Additionally, these extracts are aimed at prolonging product shelf life by harnessing their antioxidant attributes. Methods: Several microorganisms, including E. coli and Pseudomonas, were subjected to testing. Ethanolic alcohol, chloroform, and essential oil extracts were prepared;
... Show MoreIn this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin
... Show MoreThin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show More