Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and the period of nano-treatment on the wettability of calcite is examined. We find that nano-treatment alters the wettability significantly i.e. intermediate-wet calcite turns strongly water-wet after treatment (e.g. at 20 MPa and 50 °C, θ = 64° for intermediate-wet calcite, and θ = 28° for nano-treated calcite). Consequently, pre-injection of nanofluids will significantly enhanced the storage potential. It was also found that the permanent shift in wettability after nano-treatment is a function of treatment conditions including temperature, pressure, and treatment duration time and that surfaces treated under high pressure and low temperature yield better wettability alteration efficiency. We point out that the change in wettability is attributed to the changes in surface properties of the nano-treated sample. The results of the study thus depict that nanoparticles can significantly enhance storage potential and de-risk storage projects.
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
Moment invariants have wide applications in image recognition since they were proposed.
This booklet contains the basic data and graphs forCOVID-19 in Iraq during the first three months of thepandemic ( 24 February to 19 May - 2020 ) , It isperformed to help researchers regarding this health problem (PDF) Information Booklet COVID-19 Graphs For Iraq First 3 Months. Available from: https://www.researchgate.net/publication/341655944_Information_Booklet_COVID-19_Graphs_For_Iraq_First_3_Months#fullTextFileContent [accessed Oct 26 2024].
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show More* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
This paper addresses the use of adaptive sliding mode control for the servo actuator system with friction. The adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, the magnitude of control effort is reduced to the minimal admissible level defined by the conditions for the sliding mode to exist. Secondly, the upper bounds of uncertainties are not required to be known in advance. Therefore, adaptive sliding mode control method can be effectively implemented. The numerical simulation via MATLAB 2014a for servo actuator system with friction is investigated to confirm the effectiveness of the proposed robust adaptive sliding mode control scheme. The results clarify, after
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).