This document provides an examination of research, on combining orthogonal frequency division multiplexing (OFDM) and optical fibers in communication networks. With the increasing need for data speeds and efficient use of bandwidth experts have been exploring the connection between OFDM, valued for its ability to handle multipath interference and optimize spectral usage and optical fiber technology which provides superior data transmission capabilities with low signal loss and strong protection, against electromagnetic disturbances. The review summarizes discoveries from studies examining the pros and cons of using OFDM, in optical communication networks. It discusses obstacles like fiber nonlinearity, chromatic dispersion and the effects of phase noise while also assessing solutions suggested in research. Furthermore, the paper contrasts performance measures such as bit error rate signal, to noise ratio and usage to show how OFDM can improve the efficiency and dependability of optical fiber systems. Through combining findings from theoretical and simulation driven studies this analysis showcases the progress and existing hurdles in merging OFDM with optical fiber technologies. It serves as a reference, for endeavors, in cutting edge communication networks.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreIdentification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreThe present work covers the Face-Hobbing method for generation and simulation of meshing of Face hobbed hypoid gear drive. In this work the generation process of hobbed hypoid gear has been achieved by determination of the generation function of blade cutter. The teeth surfaces have been drawn depending on the simulation of the cutting process and the head cutter motion. Tooth contact analysis (TCA) of such gear drive is presented to evaluate analytically the transmission error function for concave and convex tooth side due to misalignment errors. TCA results show that the gear is very sensitive to misalignment errors and
the increasing of the gear teeth number decrease the transmission error for both concave and convex tooth sides a
Geophysics is one of the branches of Earth sciences and deals with studying the Earth's interior by studying the variation of physical properties within rock layers. Applied geophysics depends on procedures that involve the measurements of potential fields, such as the gravitational method. One of the significant oil fields in southern Iraq is represented by the Nahr Omar structure. A power spectrum analysis (SPA) technique was used to collect gravity data within the chosen oil field area in order to confirm the salt dome in the subsurface layers. The analysis of SPA resulted from six surfaces representing the gravity variation values of the depths (m)14300, 3780, 3290, 2170, 810, and 93.5. Gravity surfaces have been converted to de
... Show More