This document provides an examination of research, on combining orthogonal frequency division multiplexing (OFDM) and optical fibers in communication networks. With the increasing need for data speeds and efficient use of bandwidth experts have been exploring the connection between OFDM, valued for its ability to handle multipath interference and optimize spectral usage and optical fiber technology which provides superior data transmission capabilities with low signal loss and strong protection, against electromagnetic disturbances. The review summarizes discoveries from studies examining the pros and cons of using OFDM, in optical communication networks. It discusses obstacles like fiber nonlinearity, chromatic dispersion and the effects of phase noise while also assessing solutions suggested in research. Furthermore, the paper contrasts performance measures such as bit error rate signal, to noise ratio and usage to show how OFDM can improve the efficiency and dependability of optical fiber systems. Through combining findings from theoretical and simulation driven studies this analysis showcases the progress and existing hurdles in merging OFDM with optical fiber technologies. It serves as a reference, for endeavors, in cutting edge communication networks.
Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes del
... Show MoreThis work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different video
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreOver the years, the field of Medical Imagology has gained considerable importance. The number of neuroimaging studies conducted using functional magnetic resonance imaging (fMRI) has been exploding in recent years. fMRI survey gives to rise to large amounts of noisy data with a complex spatiotemporal correlation structure. Statistics play great role in clarifying the features of the data and gain results that can be used and explain by neuroscientists. Several types of artifacts can happen through a functional magnetic resonance imaging (fMRI) scanner Because of software or hardware problems, physical limitation or human physiologic phenomenon. Several of them can negatively affect di
The performance of a solar cell under sun radiation is necessary to describe the electrical parameters of the cell. The Prova 200 solar panel analyzer is used for the professional testing of four solar cells at Baghdad climate conditions. Voltage -current characteristics of different area solar cells operated under solar irradiation for testing their quality and determining the optimal operational parameters for maximum electrical output were obtained. A correlation is developed between solar cell efficiency h and the corresponding solar cell parameters; solar irradiance G, maximum power Pmax, and production date P. The average absolute error of the proposed correlation is 5.5% for 40 data points. The results also show th
... Show MoreThis work aims to investigate the integrated ultra-dense wavelength division multiplexing (UDWDM) and polarization division multiplexing (PDM) schemes incorporated in the free space optic (FSO) communication system. Erbium-doped fiber amplifiers (EDFAs) are used as post and pre-amplifiers in the proposed UDWDM–PDM–FSO system to boost the transmission power for increasing the distance. Thirty-two channels are transported over the FSO link to realize the total data transmission of 160 and 320 Gbps with 0.08 and 0.1 nm channel spacing, respectively. Results are also reported with non-return to zero modulation schemes. The performance of the proposed UDWDM–PDM–FSO transmission sys
In this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of