Choosing antimicrobials is a common dilemma when the expected rate of bacterial resistance is high. The observed resistance values in unequal groups of isolates tested for different antimicrobials can be misleading. This can affect the decision to recommend one antibiotic over the other. We analyzed recalled data with the statistical consideration of unequal sample groups. Data was collected concerning children suspected to have typhoid fever at Al Alwyia Pediatric Teaching Hospital in Baghdad, Iraq. The study period extended from September 2021 to September 2022. A novel algorithm was developed to compare the drug sensitivity among unequal numbers of Salmonella typhi (S. Typhi) isolates tested with different antibacterials. According to the proposed algorithm, the predicted resistance values were more valid than the observed values. This proposed algorithm is expected to help the hospital antibiotic policy committee recommend the proper antibacterial agents for S. Typhi and further bacterial isolates.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreRe-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c
ABSTRACT : Alzheimer’s disease (AD) is one of the most common inflammatory neurodegenerative diseases linked with dementia, it is characterized by the deposition of amyloid beta-peptide (Ab) in the brain. The present study aims to innovate a biochemical relationship between AD and interleukin 38 (IL-38) as an anti-inflammatory cytokine, expose novel mechanisms and concepts regarding other biochemical parameters studied previously or recently in AD patients and also examine the biochemical action of memantine (10 mg daily) on AD patients. Sixty (60) diagnosed AD patients participated in the present study and classified into four (4) groups: G3 were composed of (15) newly diagnosed males (52-78) years / without treatment, G4 composed of (15
... Show MoreBackground: The COVID-19 virus outbreak had a massive effect on many parts of people's lives, as they were advised to quarantine and lockdown to prevent the virus from spreading, which had a big impact on people's mental health, anxiety, and stress. Many internal and external factors lead to stress. This negatively influences the body's homeostasis. As a result, stress may affect the body's capacity to use energy to defend against pathogens. Many recent investigations have found substantial links between human mental stress and the production of hormones, prohormones, and/or immunological chemicals. some of these researches have verified the link between stress and salivary cortisol levels. The aim of this study is to measure salivary corti
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More