Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportation Problem (also called Hitchcock Problem and denoted by TP) is one of the classic problems in operation research, a special type of linear programming problem(2): Where : cij = unit transportation cost for each source i to destination j. xij = number of units from source to destination. ai = supply from sources ; bj= demand from destination We have to determine the optimal shipments from a given set of origins to a given set of destinations in such a way as to minimize the total (7) transportation costs. Have been widely studied in computer science and operations research. It is one of the fundamental problems of network flow problem which is usually use to minimize the transportation cost for industries with number of sources and number of destination while (1) satisfying the supply limit and demand requirement. The problem is constrained by known upper limits on the supply at the various origins and by the necessity to satisfy the known demand at each destination. The classical transportation model assumes that the per unit cost for each potential origin destination pair is known a (2) priori. It was first studied by F. L. Hitchcock in 1941, then separately by T. C. Koopmans in 1947, and finally placed in the framework of linear programming and solved by simplex method by G. B. Dantzig in 1951 (3)(4) .The first step of the simplex method for the transportation problem is to determine an initial basic feasible solution. The simplest procedure for finding an initial basic feasible solution was proposed by Dantzig (1951) and was termed the northwest corner rule by charnes (5)
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
Abstract
The project of balad's major sewerage system is one of the biggest projects who is still in progress in salahulddin province provincial - development plan that was approved in 2013 . This project works in two parts ; the 1st is installing the sewerage networks (both of heavy sewerage & rain sewerage) and the 2nd is installing the life – off units (for heavy sewerage & rain sewerage , as well) . the directorate of salahuiddin is aiming that at end of construction it will be able to provide services for four residential quarters , one of the main challenges that project's management experience is how to achieve thes
... Show MoreThe aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point osculatory interpolation. The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems. A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects
... Show MoreIn this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
Fuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show MoreThis study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreThe current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show More