In this work, silver (Ag) self-metallization on a polyimide (PI) film was prepared through autocatalytic plating. PI films were prepared through the solution casting method, followed by etching with potassium hydroxide (KOH) solution, sensitization with tin chloride (SnCl2), and the use of palladium chloride (PdCl2) to activate the surface of PI. Energy-dispersive X-ray analysis (EDX) showed the highest peak in the (Ag) region and confirmed the presence of AgNPs. The diffraction peaks at 2θ = 38.2°, 44.5°, 64.6°, and 78.2° represented the 111, 200, 220, and 311 planes of Ag, respectively. The FT–IR analysis for Ag-metalized PI showed that the =C-O-C= stretching absorption bands at 1735 cm−1 had no changes in position, only a significant difference in peak size at the deposition time increase. The formation of new bands (N–H stretching absorption band and N–C stretching band) assigned at 2325 and 955 cm−1 indicated strong coordination between N atoms and silver nanoparticles. The C–C stretching and = C–H plane vibration band at 1488 and 1117 cm−1 are shifted to 1413 and 1112 cm−1, indicating the silver nanoparticles' interaction with the polymer backbone. The thermal stability of PI- and Ag-metalized PI films at various deposition times (5, 10, and 15 min) was examined using thermogravimetric analysis (TGA). For PI, T0, T5, T10, and Tmax were observed to be 388°C, 402°C, 414°C, and 515°C, respectively. When the deposition time increased, the thermal stability increased. As a function of the deposition, the thickness and surface morphology of the copper layer on the PI films were characterized using scanning electron microscopy (SEM).
In the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks
Production and characterization of methionine γ- lyase from Pseudomonas putida and its effect on cancer cell lines
This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).
Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.
The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was
... Show MoreThe negative impact of oral diseases on the function, economy, and general health of the population is well‐documented. In the last decades, evidence linking increased expression of depression and oral diseases/conditions has significantly increased. The aim of this study is to assess the association between oral disease/conditions and self‐reported symptoms of depression individuals.
A specially designed questionnaire was distributed via social media for 1 week. It consisted of two main sections; the first section was dedicated to collect demographic variables and self‐reported symptoms
Nowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject
... Show MorePolymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MorePhenytoin selective electrodes were constructed based on penytoin-phosphotungstate (Ph-PT) complex with different plasticizers; di-butyl phosphate (DBP), tri-butyl phosphate (TBP), di-butyl phthalate (DBPH),and o-nitro phenyl octyl ether (NPOE) phthalate. The electrodes based on DBPH, ONPOE plasticizers gave Narnistain slope which are, 56.4 and 55.3mV/decade with detection limit of 1.9x10-5 M , 1.8x10-5 and concentration range 10-1 to 10-4 M and pH range 3.0 – 8.0. The electrodes based on TBP and DBP showed non-Nernistain slopes, 40.2,40.5 mV/decade for both plasticizers. Interfering of some cations was investigated and shows no interfering with electrodes response. Potentiometric methods were used for measuring phenytion in
... Show MoreA transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show More