In this work, silver (Ag) self-metallization on a polyimide (PI) film was prepared through autocatalytic plating. PI films were prepared through the solution casting method, followed by etching with potassium hydroxide (KOH) solution, sensitization with tin chloride (SnCl2), and the use of palladium chloride (PdCl2) to activate the surface of PI. Energy-dispersive X-ray analysis (EDX) showed the highest peak in the (Ag) region and confirmed the presence of AgNPs. The diffraction peaks at 2θ = 38.2°, 44.5°, 64.6°, and 78.2° represented the 111, 200, 220, and 311 planes of Ag, respectively. The FT–IR analysis for Ag-metalized PI showed that the =C-O-C= stretching absorption bands at 1735 cm−1 had no changes in position, only a significant difference in peak size at the deposition time increase. The formation of new bands (N–H stretching absorption band and N–C stretching band) assigned at 2325 and 955 cm−1 indicated strong coordination between N atoms and silver nanoparticles. The C–C stretching and = C–H plane vibration band at 1488 and 1117 cm−1 are shifted to 1413 and 1112 cm−1, indicating the silver nanoparticles' interaction with the polymer backbone. The thermal stability of PI- and Ag-metalized PI films at various deposition times (5, 10, and 15 min) was examined using thermogravimetric analysis (TGA). For PI, T0, T5, T10, and Tmax were observed to be 388°C, 402°C, 414°C, and 515°C, respectively. When the deposition time increased, the thermal stability increased. As a function of the deposition, the thickness and surface morphology of the copper layer on the PI films were characterized using scanning electron microscopy (SEM).
Abstract. In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measur
... Show MoreThe synthesis of new substituted cobalt Phthalocyanine (CoPc) was carried out using starting materials Naphthalene-1,4,5, tetracarbonic acid dianhydride (NDI) employing dry process method. Metal oxides (MO) alloy of (60%Ni3O4 40%-Co3O4 ) have been functionalized with multiwall carbon nanotubes (F-MWCNTs) to produce (F-MWCNTs/MO) nanocomposite (E2) and mixed with CoPc to yield (F-MWCNT/CoPc/MO) (E3). These composites were investigated using different analytical and spectrophotometric methods such as 1H-NMR (0-18 ppm), FTIR spectroscopy in the range of (400-4000cm-1), powder X-rays diffraction (PXRD, 2θ o = 10-80), Raman spectroscopy (0-4000 cm-1), and UV-Visib
... Show MoreThe present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
In this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show Morein this worl three types of complexed phenolic resins were prepared using various additives such as and improving the aim of this work higher mechanical properties this work is done
Eighty one bacterial isolates were obtained from 53 soil samples of different plants rhizosphere. All the isolated bacterial were screened for antifungal effect against Fusarium oxysporum . Three isolates gave antifungal activity with inhibition zone ranged between (0.5-2.5 cm). Two isolates (Bd1 and Bd2) were Brevundimonas diminuta, while the third (Pf1) was Pseudomonas fluorescence . B. diminuta (Bd1) which used in this study isolated from Raphanus sativus gave the highest inhibition zone against F. oxysporum. Cell free supernatant of B.diminuta(Bd1) was better in antifungal activity than bacterial cells against F. oxysporum. The highest antifungal substance production was obtained from mineral salt broth containing 1% peptone after in
... Show More