The aim of this study was to evaluate the effects of local application of bisphosphonate gel and recombinant human bone morphogenic protein 2 gel, on titanium dental implant stability and marginal bone level. Twenty-seven patients with upper and lower missing posterior tooth/teeth were included in the study with a total of 71 implants that were used for rehabilitation. The implants were randomly divided into 4 groups: 3 study groups and 1 control. Group1; local application of bisphosphonate gel, group 2; local application of recombinant human bone morphogenic protein 2 gel, group 3; local application of a mixed formula of both gels. The gel application was immediately preimplant insertion, group 4; implant insertion without application of any medication. Using resonance frequency analyzer, implant stability was measured 4 times; primary, 8 weeks (second stage surgery), 12 weeks, and at least 14 weeks post functional loading. The level of the marginal bone around each implant were assessed using cone beam computed tomography. Four implants failed. Generally, there was a similar pattern of changes in implant stability over the study period in all groups and the stability was dependent on the healing time with no significant difference between groups. There was no significant treatment effect regarding marginal bone level differences of study groups against control, although there were significant differences on palatal and mesiodistal surfaces among the study (test) groups.
In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr
... Show MoreThe research aims at integrating the disclosure of the business models with the qualitative characteristics of accounting information. To achieve this, the elements of the business model should be identified and disclosed, and then study the possibility of integrating the disclosure of the business model with the qualitative characteristics of accounting information.
To achieve this objective, the research was based on the indicators of disclosure of the business model of the International Accounting Standards Board to measure the disclosure of the business model.
The research reached a number of conclusions, the most important of which were as follows:
Fi
... Show MoreThe experiment was carried out in the spring season of 2017 in the open fields of the College of Agricultural Engineering Sciences/University of Baghdad/Al-Jadriya camps in order to improve the growth and yield of potato plants resulting from the cultivation of true potato seeds of the hybrid BSS-295 by spraying with two organic nutrients. The experiment included two factors: First one was spraying with Megafol nutrient at concentrations 0, 1, 2 and 4 ml l-1 and the second was spraying with Algazone nutrient at concentrations 0, 1.5 and 3 ml l-1, the experiment was applied according to the complete randomized block design with three replicatio
In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried
... Show More