Optimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve such problems, each one of them was solved by very different approaches.
We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreThe study showed that all extracts (aqueous, ethanolic and acetonic) of the leaves of Eucalyptus and Myrtus plants had a inhibitory effect on the growth of all types of yeasts studied, acetone extract recorded the highest inhibition of yeastat 100ppm concentration,The inhibition was 35mm, 34mm, 24mm and 20mm for Candida parapsilosis, Candida glabrata, Candida tropicalis and Candida albicans respectively, The experiments above showed the least significant differences at 0.05 level.The results ofE. Cammldulensis ethanolic tincture analysis has shown the presence of 44 biologically active substances. The main Eucalyptus leaves component was: 2-Bicyclo (2-2.1) heptanol (12.37%), Ledol (8.23%),1,2,4- Benzenetriol (8.45%) and that contain spathul
... Show MoreThe goal of the current study was to investigate the effects of curcumin in both formulas (supplement and standard), zinc, and then use them together to show their effect on the levels of glucose, insulin, insulin resistance (IR), and anti-mullerian hormone (AMH) in the model of female rats with induced polycystic ovary syndrome (PCOS) using 1mg/kg/day of letrozole for 21 days followed by a treatment period of 14 days including different treatments of zinc 30 mg/kg, curcumin standard 200 mg/kg, curcumin supplement 200 mg/kg, (curcumin standard plus zinc), (curcumin Supplement plus zinc) and metformin as a standard treatment. After the treatment, all female rats were sacrificed, and blood samples were collected from the inferior vena cava
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreAbstract
The population is sets of vocabulary common in character or characters and it’s study subject or research . statistically , this sets is called study population (or abridgement population ) such as set of person or trees of special kind of fruits or animals or product any country for any commodity through infinite temporal period term ... etc.
The population maybe finite if we can enclose the number of its members such as the students of finite school grade . and maybe infinite if we can not enclose the number of it is members such as stars or aquatic creatures in the sea . when we study any character for population the statistical data is concentrate by two metho
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.