Electricity consumption for household purposes in urban areas widely affects the general urban consumption compared to other commercial and industrial uses, as household electricity consumption is affected by many factors related to the physical aspects of the residential area such as temperature, housing unit area, and coverage ratio, as well as social and economic factors such as family size and income, to reach the extent of the influence of each of the above factors on the amount of electricity consumed for residential uses, a selected sample of a residential area in the city of Baghdad was studied and a field survey conducted of the characteristics of that sample and the results analyzed and modeled statistically in relation to the amount of electricity consumed for residential units. Results showed that the annual electricity consumption is directly proportional to both the increase in the residential plot area and the increase in the number of residents of the housing unit and the increase in the monthly income of households, while it is inversely proportional to the plot coverage rate. Through the results of the field research, it was possible to build six quantitative models describing the behavior of electricity consumption in relation to the variables covered in the research.
An indirectly method is used to determine hydrogen peroxide. The method based on oxidation of chromium (III) ion by hydrogen peroxide in basic medium to form chromate ion which react with barium (II) ion to produce a yellow precipitate (BaCrO4). Under the optimum established conditions, the linear range of 0.50-25.00 mmol L-1 along with correlation coefficient (r) of 0.9992, Limit of detection (LOD) 0.68 μg / 100 μL, precision expressed as relative standard deviation for six replication measurements at 5.0 mmol.L-1 H2O2 of less than 2% were obtained for hydrogen peroxide. The developed method was successfully applied for the estimation of H2O2 in three pharmaceuticals preparation of different companies using continuous flow injection o
... Show MoreThe synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show Moreالمستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
Quinolones L1 (ciprofloxacin) are manufactured wide range anti-infection agents with great oral ingestion and magnificent bioavailability. Because of the concoction capacities found on their core (a carboxylic corrosive capacity at the 3-position) and much of the time an essential piperazinyl ring (or anothertN-heterocycle) at the 7-positionh and a carbonylvoxygenc atomi atothel 4-positioni) quinolones bind metal particlesiframing buildings which can go about as bidentate. Bidentateiligands L2=2-phenyl-2-(P-methoxy anilinee) acetonitrilel was set up by the response of Primiryiaminejwithjbenzaldehyde, in nearness of potassiumbcyanidej and acidicimedia . Theimetalledifices were portrayed by the miniaturized scale component examination (C.H
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThe current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreIn this work the Aluminum plasma in Air produced by Nd: YAG pulsed laser, (λ = 1064 nm, τ = 6 ns) has been studied with a repletion rate of 10 Hz. The laser interaction in Al target (99.99%) under air atmosphere generates plasma, which is produced at room temperature; with variation in the energy laser from 600-900 mJ. The electron temperature and the electron density have been determined by optical emission spectroscopy and by assuming a local thermodynamic equilibrium (LTE) of the emitting species. Finally the electron temperature was calculated by the Boltzmann plot from the relative intensities of spectral lines and electron density was calculated by the Stark-broadening of emission line.