An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
The aim of the current research is to find out the extent to which algebraic thinking skills are included in the mathematics textbook for the third intermediate grade for the academic year (2020-2021) by answering the main research question:What algebraic thinking skills are included in the mathematics textbook for middle third grade?The descriptive and analytical approach was used, and to achieve the goal of the research, a list of the main algebraic thinking skills and the sub-skills were prepared, and after analyzing the content of the mathematics textbook, the stability of the analysis was verified through the analysis over time and across individuals using the Holsti equation, and
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show MoreIn this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .