Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studied and modeled. Results: The results revealed the positive effect of the electrodes design on the studied responses. Conclusion: Under the optimum values of the operating variables (5.675 mA/cm2, 40 min), 85.982% and 84.439% removal efficiencies of oil content and turbidity respectively were obtained and the consumption of energy and electrodes were observed as 4.333kWh/m3 and 0.36 g respectively.
A simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected optimum conditions,
... Show MoreWater pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show MoreThe health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show MoreFree water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake). In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and
... Show MoreIn this paper, we describe the cases of marriage and divorce in the city of Baghdad on both sides of Rusafa and Karkh, we collected the data in this research from the Supreme Judicial Council and used the cubic spline interpolation method to estimate the function that passing through given points as well as the extrapolation method which was applied for estimating the cases of marriage and divorce for the next year and comparison between Rusafa and Karkh by using the MATLAB program.
In this paper, two types of iron oxide nanomaterial (Fe3O4) and nanocomposite (T-Fe3O4) were created from the bio-waste mass of tangerine peel. These two materials were utilized for adsorption tests to remove cefixime (CFX) from an aqueous solution. Before the adsorption application, both adsorbents have been characterized by various characterizations such as XRD, FTIR, VSM, TEM, and FESEM. The mesoporous nano-crystalline structure of Fe3O4 and T-Fe3O4 nanocomposite with less than 100-nm diameter is confirmed. The adsorption of the obtained adsorbents was evaluated for CFX removal by adjusting several operation parameters to optimize the removal. The optimal conditions for CFX removal were found to be an initial concentration of 40 and 50 m
... Show MoreThe game of volleyball requires the formation of new motor responses, which in turn requires special physical characteristics in the performance of that skill, and the correct and accurate performance during the performance of the skills of passing from the top and smash serve in volleyball cannot be developed or improved without a good level of accuracy and what is required to perform the movements in terms of responses to the defense and attack movements. Therefore, the researchers decided to identify the type of relationship between the motor response speed with the performance accuracy of the skills of passing from the top and the smash serve in volleyball. The research aims to: 1. Identifying the motor response speed of fourth-stage s
... Show MoreThis paper presents a comparative study between different oil production enhancement scenarios in the Saadi tight oil reservoir located in the Halfaya Iraqi oil field. The reservoir exhibits poor petrophysical characteristics, including medium pore size, low permeability (reaching zero in some areas), and high porosity of up to 25%. Previous stimulation techniques such as acid fracturing and matrix acidizing have yielded low oil production in this reservoir. Therefore, the feasibility of hydraulic fracturing stimulation and/or horizontal well drilling scenarios was assessed to increase the production rate. While horizontal drilling and hydraulic fracturing can improve well performance, they come with high costs, often accounting for up t
... Show More