Preferred Language
Articles
/
_heafY0BVTCNdQwCHBUA
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring 300 mm in width and 250 mm in depth. To apply loads for testing, two-point static loads were placed at the middle third of the beam’s span, creating a shear span of 700 mm in length. The beams were categorized into three groups depending on the GFRP longitudinal reinforcement ratio in the tension and compression zones of the section. GFRP bars with a diameter of 15 mm were employed as longitudinal reinforcement, while closed GFRP stirrups with a diameter of 8 mm at 100 mm were utilized as transverse reinforcement throughout the structural element. Test results have indicated that the ultimate load capacity of doubly GFRP-reinforced concrete beams varies compared to singly GFRP-reinforced beams. The range of variation observed is between an increase of 8% and a decrease of 4%. Accordingly, the contribution of the GFRP bars in the compression zone is insignificant and could be ignored in design calculations. It was observed that the loading level at which crack spacing stabilized ranged between 31.3 and 87% of the experimental failure load. It seems that the crack spacing decreased with the increase in the reinforcement ratio.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Manufacturing and improving the characteristics of the isolation of concrete composites by additive Styrofoam particulate
...Show More Authors

View Publication
Scopus (27)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering & Technology
Influence of Percentage Replacement of Metakaolin on Different Concrete Types Exposed to Internal Sulphate Attack
...Show More Authors

This research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength

... Show More
Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Influence of fly ash on the volumetric and physical properties of Stone Matrix Asphalt Concrete
...Show More Authors

Stone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The effect of using magnetized water on the percentage of cement in the Concrete mixture
...Show More Authors

This research studied the effect of magnetized water in concrete preparation and its effect on the presenting of cement in concrete mixtures also to find the ability of reducing the amount of cement in preparing one cubic meter, this is not exceed than 10% in one mixture , The experiments showed the preparation of standard cubes from the concrete which was used two kind of water magnetized water which was prepared by passing the tap water through the systems of different magnetic strength in terms of (6000,9000) Gauss and the ordinary water . The velocity of water through the magnetic field, which gives us the highest value for the compressive strength, was up to 1m/sec. to determine the best magnetic intensity, we examined The comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Utilization of Iraqi Metakaolin in Special Types of Concrete: A Review Based on National Researches
...Show More Authors

Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up t

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas,

... Show More
Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Evaluating the Uses of Concrete Demolishing Waste in improving the Geotechnical Properties of Expansive Soil
...Show More Authors

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Assessment of Bearing Capacity and Settlement Characteristics of Organic Soil Reinforced by Dune Sand and Sodium Silicate Columns: A Numerical Study
...Show More Authors

Organic soil is problematic soils in geotechnical engineering due to its properties, as it is characterized by high compressibility and low bearing capacity. Therefore, several geotechnical techniques tried to stabilize and improve this soil type. In this study, sodium silicate was used to stabilize sand dune columns. The best sodium silicate concentration (9%) was used, and the stabilized sand dune columns were cured for seven days. The results for this soil were extracted using a numerical analysis program (Plaxis 3D, 2020).In the case of studying the effect of (L/D) (where ‘’L” and ‘’D’’ length and diameter of sand dune columns) of a single column of sand dunes stabilized with sodium silicate with a diff

... Show More
View Publication Preview PDF
Crossref (2)
Crossref