The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring 300 mm in width and 250 mm in depth. To apply loads for testing, two-point static loads were placed at the middle third of the beam’s span, creating a shear span of 700 mm in length. The beams were categorized into three groups depending on the GFRP longitudinal reinforcement ratio in the tension and compression zones of the section. GFRP bars with a diameter of 15 mm were employed as longitudinal reinforcement, while closed GFRP stirrups with a diameter of 8 mm at 100 mm were utilized as transverse reinforcement throughout the structural element. Test results have indicated that the ultimate load capacity of doubly GFRP-reinforced concrete beams varies compared to singly GFRP-reinforced beams. The range of variation observed is between an increase of 8% and a decrease of 4%. Accordingly, the contribution of the GFRP bars in the compression zone is insignificant and could be ignored in design calculations. It was observed that the loading level at which crack spacing stabilized ranged between 31.3 and 87% of the experimental failure load. It seems that the crack spacing decreased with the increase in the reinforcement ratio.
One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreIn this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
Geotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the
The provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreMost of the recent works related to the construction industry in Iraq are focused on investigating the validity of local raw materials as alternatives to the imported materials necessary for some practical applications, especially in thermal and sound insulation. This investigation includes the use of limestone dust as partial substitution of cement in combination with foam agent and silica fume to produce sustainable Lightweight Foam Concrete (LWFC). This study consists of two stages. In the first stage, trial mixes were performed to find the optimum dosage of foam agent. Limestone dust was used as a partial replacement for cement. Chemical analysis and fineness showed great similarity with cement. Many concrete mixes were prepared
... Show MoreThe research included five sections containing the first section on the introduction o research and its importance and was addressed to the importance of the game of gymnastic and skilled parallel bars effectiveness and the importance of biochemical variables, either the research problem that there is a difference in learning this skill and difficulty in learning may be one of the most important reasons are falling and injury Has a negative impact on the performance and lack of sense of movement of is one of the obstacles in the completion of the skill and the goal of research to design a device that helps in the development of biochemical changes to skill of rear vault dismount with one-half twist on parallel bars in gymnastics . And the n
... Show More