The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring 300 mm in width and 250 mm in depth. To apply loads for testing, two-point static loads were placed at the middle third of the beam’s span, creating a shear span of 700 mm in length. The beams were categorized into three groups depending on the GFRP longitudinal reinforcement ratio in the tension and compression zones of the section. GFRP bars with a diameter of 15 mm were employed as longitudinal reinforcement, while closed GFRP stirrups with a diameter of 8 mm at 100 mm were utilized as transverse reinforcement throughout the structural element. Test results have indicated that the ultimate load capacity of doubly GFRP-reinforced concrete beams varies compared to singly GFRP-reinforced beams. The range of variation observed is between an increase of 8% and a decrease of 4%. Accordingly, the contribution of the GFRP bars in the compression zone is insignificant and could be ignored in design calculations. It was observed that the loading level at which crack spacing stabilized ranged between 31.3 and 87% of the experimental failure load. It seems that the crack spacing decreased with the increase in the reinforcement ratio.
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
Background: This study aimed to compare the surface microhardness (MH) and mineral content of white spot lesions(WSLs) after using bioactive glass (BAG)casein phosphopep-tides-amorphous calcium phosphate(CPP-ACP),and nanohydroxyapatite(Nano-HAP) under pHcycling. Material and method:18 sound maxillary first premolar were used for the study.10 were selected for the vickers microhardness test, For Energy-dispersive X-ray spectroscopy analysis (EDX), the remaining 8 premolar teeth were used, 40 sections of enamel blocks (Four from each tooth) were produced from the middle part of the buccal and palatal surfaces of teeth for MH test while 48 sections of enamel blocks (Six from each tooth) were produced for EDX analysis. Enamel slabs were
... Show MoreSeeking pharmacist advice about minor ailments is a common practice among Iraqi patients because such advice is free and quick. Unfortunately, the assessment and management of minor ailments by Iraqi pharmacists were inappropriate. Therefore, this study aimed to develop a model for a mobile application that can assist community pharmacists in the diagnosis and management of minor ailments.
The scientific content of the application was based on the information in the symptoms in the pharmacy and British Nati
Ifosfamide (IFO), an alkylating chemotherapy agent, is known for its association with neurotoxicity and encephalopathy. This trial was designed to evaluate the protective action of daidzein (DZN) against IFO-induced neurotoxicity in male rats by determining the difference in certain inflammatory and apoptotic markers in the brain tissue of rats. Twenty-eight Wistar rats, weighing 120-150 g, were divided into four groups of seven rats: Group 1 (Control) received no treatment; Group 2 was orally administered DZN (100 mg/kg/day) for seven days; Group 3 received a single intraperitoneal (IP) dose of IFO (500 mg/kg); Group 4 received oral DZN (100 mg/kg/day) for one week prior to a single IP dose of IFO on the seventh day. Twenty-four hours post
... Show MoreLasmiditan (LAS) was formulated as a nanoemulsion based in situ gel (NEIG)with the aim of improving its oral bioavailability via application intranasally. The solubility of LAS in oils, emulsifiers, and co-emulsifiers was determined to identify nanoemulsion (NE)components. Phase diagrams were constructed to identify the area of nanoemulsification. LAS NE was formulated using the spontaneous nanoemulsification method. Four NEs (F19, F24, F31, and F34) containing 7-15 % oleic acid (OA) as an oily phase, 40-55% labrasol (LR), and transcutol (TC) as emulsifier mixture at (1:1), (2:1), (3:1), and (1:2) ratio with 30-53 % (w/w) aqueous phase, having suitable optical transparency of 95–98%, globule size of 104-140 nm and polydisper
... Show MoreBackground: While warfarin and direct oral anticoagulants (DOACs) are used to manage thromboembolic events, they possess several features that impact adherence. Objective: To assess medication adherence and self-efficacy in patients receiving warfarin or DOAC treatment. Methods: A cross-sectional study was performed at Ibn Al-Bitar Hospital in Baghdad from December 2022 to May 2023 on patients receiving either warfarin or DOACs. The Arabic version of the Adherence to Refills and Medications Scale (ARMS) questionnaire and the Self-Efficacy for Managing Chronic Disease 6-Item Scale (SES6C) questionnaire were used to assess adherence and self-efficacy. Results: 181 patients were enrolled in the study, of whom 56.9% received warfarin an
... Show More