Polyhydroxyalkanoates (PHAs) have gained much attention as biodegradable polymers, many efforts are being made to minimize the cost of PHAs by finding cheap carbon source depending on the type of microorganism and fermentation conditions. The aims of this study were to evaluate the effects of different glucose concentrations and other important conditions on the PHA production by Bacillus cereus isolated from soil. Polyhydroxyalkanoates PHAs accumulated by soil microorganisms were examined by screening the isolated bacteria using Sudan B Black and Nile Blue staining process. A Gram positive strain was identified using the 16s rRNA gene, deposited in the NCBI GenBank sequence database. Different growth conditions (favorite glucose concentrations 1-8 % (w/v), temperatures and pH) were tested and the growth parameters (sugar consumption, cell counting and Cell Dry Weight CDW) were studied. The extracted polymers were analyzed and characterized using an FTIR spectrophotometer followed by a GC-MS analysis. The pure bacterial strain isolated from soil was deposited in the NCBI GenBank database B. cereus strain ARY73, which showed significant black colored granules (or dark blue) using Sudan B Black stain, it also showed positive to Nile blue A as a high indicator stain for PHA accumulation. B. cereus ARY73 showed high production of PHA using (w/v): 2% glucose and 1% nitrogen source at 35 °C and pH7 yields 79% per Cell Dry Weight and 96 h of incubation. The extracted polymers were analyzed and characterized using an FTIR spectrophotometer confirming the PHA structure. The FTIR spectrophotometer, followed by a GC-MS analysis indicated the Scl-co-mcl PHA structure. This research demonstrates that the isolated strain B. cereus ARY73 was a good candidate for PHA production with a better quality for use in biomedical and other applications. The use of biopolymer in soil, enhanced the accumulation of the microorganisms (such as bacteria) capable of degrading biopolymer or biodegradation by-products yields by other species which were isolated in this
This study presents a detailed morphology and taxonomic study of Polysiphonia subtilissima collected from Abdul Rehman Goth, Karachi coast, Pakistan. Polysiphonia is a filamentous heterotrichous red algae, characterized by its branching structures and attachment mechanisms. P. subtilissima is notable for its broad salinity tolerance and wide distribution across marine and freshwater ecosystems. This research provides an in-depth examination of the internal and external structures of P. subtilissima, contributing to its systematic study and documenting its first recorded occurrence in Pakistani coastal areas, bordering the northern Arabian Sea. The findings enhance the understanding of the species taxonomy and its ecological role in
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreWater samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
Background: Most primary Health Care Centers (PHCCs) in Iraq have a referral system records; however, this mechanism does not function well because of the lack of other requirements for an efficient referral system.
Objective: To assess the practice & opinion of doctors in PHCs toward the referral system, and to determine the doctors in PHC's commitment to referral system instructions and guidelines.
Subjects and methods: A cross-sectional study with analytic elements was conducted in nine health directorates in Iraq, from the 1st October 2018 – 30th June 2019.One PHC was selected randomly form each sector in every governorate, A questionnaire was used to collect the required information.
... Show MoreThe virulent genes are the key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonization and survival of the bacterium in or cause damage to the host are pathogenicity determinants. This study aimed to investigate the prevalence of virulence factors (esp, agg, gelE, CylA) in E. faecalis isolated from diverse human clinical collected in Iraqi patient , as well as to assess their ability to form biofilm and to determine their haemolytic and gelatinase activities. Thirty-two isolates of bacteria Enterococcus faecalis were obtained, including 15 isolates (46.87%) of the urine, 6 isolates (18.75%) for each of the stool and uterine secretions, and 5 isolates (15.62%) of the wo
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show More