The study aims at identifying the sources of information and explaining their role in e-learning from the viewpoint of the Iraqi college students. The researchers relied on the descriptive method of the survey method to collect data and know the point of view of undergraduate students from the Department of Information in the College of Arts / Tikrit University and the Department of Quranic Studies at the College of Arts / University of Baghdad. The questionnaire was used as an instrument of the study, the research sample is (120) students; each section has (60) male and female students. The study concluded that there are many types and forms of information sources that students receive through electronic educational platforms from text conversations through the electronic classroom and through social networking programs, as well as lectures in various forms, books, research and various studies and methodological studies and links to sites of scientific and electronic libraries. Colleges have to work to hold training courses and educational workshops for students and professors on electronic learning platforms, programs and how to send and receive information and its sources, especially training on the platform approved by the university or college.
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreThe research seeks to identify the proposed scenarios to predict and ward off monetary credit risks that the bank is exposed to in the future, using the banking stress tests model, and showing their impact on capital adequacy and profitability ratio,To achieve this purpose, Sumer Commercial Bank was taken as a case study, and mathematical equations were used to extract the results. Low percentage of profits and returns, strictness in the process of granting credit and financing operations in order to reduce credit risks.
The aim of the current study is to identify the effectiveness of cognitive conflict strategy in comprehending reading among literary fifth students in literature and literature texts. The researcher uses experimental method with partial control. The sample consisted of (80) students distributed into control and experimental groups. The scientific material, the behavioral goals, the teaching plans, and the instrument of the research have been prepared (reading comprehension test) by the researcher.
The instrument's validity and reliability have been calculated and then applied to the sample. After treating the data statistically by using SPSS, the results have revealed that there is a statistically significant difference at the si
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate
... Show More