In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
Let be a commutative ring with identity. The aim of this paper is introduce the notion of a pseudo primary-2-absorbing submodule as generalization of 2-absorbing submodule and a pseudo-2-absorbing submodules. A proper submodule of an -module is called pseudo primary-2-absorbing if whenever , for , , implies that either or or . Many basic properties, examples and characterizations of these concepts are given. Furthermore, characterizations of pseudo primary-2-absorbing submodules in some classes of modules are introduced. Moreover, the behavior of a pseudo primary-2-absorbing submodul
... Show MoreAbstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules , where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if 0 ≠rsx A for r, s R , x E , implies that rx A + soc ( E ) or sx A + soc (E) or rs [ A + soc ( E ) E ]. Many basic properties, char
... Show MoreLet be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreWe introduce in this paper the concept of approximaitly semi-prime submodules of unitary left -module over a commutative ring with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule of an -module is called an approximaitly semi-prime submodule of , if whenever , where , and , implies that . Furthermore the behaviors of approximaitly semi-prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreLet R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.