In this work, HgBa2CaCu2-xSbxO8+δ compounds with (x = 0.2, 0.4, 0.6 and 0.8) have been prepared by the solid-state reaction method. Structural, morphological, and electrical properties were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Using the 4-probe technique to study the effect of antimony-substitution for Copper on the electrical properties of HgBa2CaCu2-xSbxO8+δ (Hg-1212) phase was investigated by measuring the resistivity as a function of temperature. Results indicate that the addition of antimony (Sb) increases the volume fraction of the phase and changes the superconducting transition temperature Tc of the superconductor to a normal state. The dielectric loss factor and ac conductivity have been investigated at room temperature. It was found that dielectric properties decreased with increasing electric field frequency. It was observed that the best value was 0.8 of the Sb content. Generally, with increasing antimony content, at lower frequencies, higher dielectric criteria are achieved, while at higher frequencies, lower dielectric criteria are achieved. On the other hand, the dissipation of the energy in the dielectric is directly proportional to the dielectric loss factor. Considering this, the increase in the values of ac conductivity is increasing with an increased frequency range to 5 MHz.
Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
In the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface rou
... Show More The ceramics specimens as superconducting phase (Bi2PbxSr2Ca2Cu3O10+δ) with different concentrations of Pb from (0.0-0.5) were prepared by solid-state reaction method. Superconducting samples were exposed to high humidity (RH 75% at 25ºC) for seven weeks time interval. The humidity has a negative effect on the transition temperature of superconductor phase .It destroys the superconducting phase and the samples were converting to insulator.
High temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
The conventional solid-state reaction method was utilized to prepare a series of superconducting samples of the nominal composition Bi2-xPb0.3WxSr2Ca2Cu3O10+d with 0≤x≤0.5 of 50 nm particle size of tungsten sintered at 8500C for 140h in air . The influence of substitution with W NPs at bismuth (Bi) sites was characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and dc electrical resistivity. Room temperature X-ray diffraction analysis revealed that there exists two phases, i.e. Bi-(2223) and Bi-(2212), in addition to the impurity phases of (SrCa) 2Cu2O3, Sr2Ca2Cu7<
... Show MoreAntimony selenide substituted with Sb0.4Se0.6 and doped with zinc at three doping ratios (x=0, 0.01 and 0.03) was prepared via the solid state reaction method. The three prepared compositions were reacted thermally at 400 °C for 3 h. The structure of specimens was characterised via X-ray powder diffractometer to obtain the type of crystalline structure and lattice parameters of the prepared specimens, which showed a polycrystalline, orthorhombic structure. Optical characterisation was then achieved via UV-visible spectroscopy to exhibit the transmittance and reflectance spectra and estimate the band gap values of the prepared compositions. The samples showed high abs
... Show More