The prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the Prime-MMGBSA module by the Schrödinger software package was used to identify compounds that showed marked specificity towards the COX-2 isoform. In addition, the ligands are subject to evaluation of their drug-like properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) characteristics using the QikProp module. Finally, molecular dynamics simulation has been calculated for the best molecule. The docking results indicated that all compounds own a predictive capability for specific binding to the COX-2 enzyme compared to the standard drug with a docking score range from -10.07 to -10.66 Kcal/mole, thus potentially overcoming the limitations imposed previously by the drugs currently used in clinical use. The ADMET analysis of the virtually active compounds demonstrated an acceptable drug-like profile and desirable pharmacokinetics properties. MM/GBSA calculation revealed that all the suggested compounds exhibited favorable free binding energies (-49.150 to - 60.185 Kcal/mole), indicating their strong potential to fit well into the COX-2 receptor. Finally, the MD simulation study revealed that compound 1 had perfect alignment with COX-2 receptor. The findings indicated that the compounds possess a predictive capability for specific binding to the COX-2 enzyme, thus potentially surmounting the restrictions imposed by the drugs currently employed in clinical use.
Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-t
... Show More
A set of ten drug compounds containing an amino group in the structure were determined theoretically. The parameters were entered into a model to forecast the optimal values of practical (log P) medicinal molecules. The drugs were evaluated theoretically using different types of calculations which are AM1, PM3, and Hartree Fock at the basis set (HF/STO-3G). The Physico-chemical data like (entropy, total energy, Gibbs Free Energy,…etc were computed and played an important role in the predictions of the practical lipophilicity values. Besides, Eigenvalues named HOMO and LUMO were determined. Linearity was shown when correlated between the experimental data with the evaluated physical properties. The statistical analysis was used to analy
... Show MorePrimary amide derivatives as histone deacetylase inhibitors (HDACIs) are very rare. This paper describes the synthesis of primary amide derivatives (compounds 6 and 7) that have the requirements to be histone deacetylase inhibitors of the zinc-binding type. Both of them exhibited good cytotoxicity against the tested cancer cell lines with much lower cytotoxicity against normal cell line.
In this work the production of activated carbon (AC) from Imperata is done by microwave assisted Potassium hydroxide (KOH) activation and using this activated carbon for the purpose of the uptake of amoxicillin (AMX) by adsorption process from aqueous solution. The effects for irradiation power (450-800W), irradiation time (6-12min) as well as impregnation ratio (0.5-1 g/g) on the AMX uptake and yield AMX uptake at an initial concentration of AMX (150 mg/g). The optimum conditions were 700 W irradiation power, 10 min time of irradiation, as well as 0.8 g/g impregnation ratio with 14.821% yield and 12.456 mg/g AMX uptake. Total volume of hole and the area of the surface (BET) are 0.3027 m³/g, and 552.7638 m²/g respectively. The properti
... Show MoreThe Coronavirus Disease (COVID-19) has recently emerged as a human pathogen caused by SARS-CoV-2 virus was first reported from Wuhan, China, on 31 December 2019. Upon study, it has been used molecular docking to binding affinity between COVID-19 protease enzyme and flavonoids with evaluations based on docking scores calculated by AutoDock Vina. Results showed that naringin suppressed COVID-19 protease, as it has the highest binding value than other flavonoids including quercetin, hesperetin, garcina and naringenin. An important finding in this study is that naringin with neighboring poly hydroxyl groups can serve as inhibitors of COVID-19 protease bind to the S pocket of protein, it is shown that residues His163, Glu166, Asn142, His41and
... Show More