Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.
In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
Non-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
In this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled
... Show More