Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla City. The gathered field measurements along different periods were used for the purpose of calibration and verification of the model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained results compared with the corresponding field observations.
This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show MoreIn this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreElectronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene
... Show MorePurpose: to demonstrate the possibility of moving to electronic data exchange dimensions (regulatory requirements, technical requirements, human requirements, senior management support) to simplify the work procedures dimensions (modern procedures, clarity of procedures, short procedures, availability of information and means required. The simplicity of the models used because of its importance to keep abreast of recent developments in the service of municipal works through the application of electronic data interchange, which simplifies procedures and out of the routine in the performance of the work of municipal departments has developed. It was applied to Municipality (Hilla) so that the transformation
... Show MoreThe aim of the current research is to verify the effect of the cognitive modeling strategy on the achievement of the chemistry course for the students of the first intermediate grade. To achieve the objective of the research, the null hypothesis was formulated via cognitive modeling strategy. The results showed that the experimental group's students performed better than the students in the control group. In the light of the results, the researchers concluded: The impact of the cognitive modeling strategy in the achievement of students of first intermediate grade in chemistry.
Objectives: to assess Socio Demographic, Reproductive Characteristics, and healthy dietary behaviors. among women with osteoporosis . To determine the relationship between the socio demographic characteristics, reproductive data and dietary related behaviors. Methodology: A descriptive analytic design was conducted on Non- Probability ( purposive sample) of (90) women who have suffering from osteoporosis attend to (DEXADual-Energy X-ray Absorptiometry) unit in Merjan Teaching Hospital in Hilla City. A questionnaire has been used as a tool of data collection and consists of three part ;including : Soci
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.