This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.
The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by
... Show MoreA high settlement may take place in shallow footing when resting on liquefiable soil if subjected to earthquake loading. In this study, a series of shaking table tests were carried out for shallow footing resting on sand soil. The input motion is three earthquake loadings (0.05g, 0.1g, and 0.2g). The study includes a reviewing of theoretical equations (available in literatures), which estimating settlement of footings due to earthquake loading, calibration, and verification of these equations with data from the shaking table test for improved soil by grouting and unimproved soil. It is worthy to note that the grouting materials considered in this study are the Bentonite and CKD slurries. A modification to the seismic set
... Show MoreThe present work evaluated the differences in mechanical properties of two athletic prosthetic feet samples when subjected to impact while running. Two feet samples designated as design A and B were manufactured using layers of different orientations of woven glass fiber reinforced with unsaturated polyester resin as bonding epoxy. The samples’ layers were fabricated with hand lay-up method. A theoretical study was carried out to calculate the mechanical properties of the composite material used in feet manufacturing, then experimental load-deflection test was applied at 0 degree position and 25 degree dorsiflexion feet position and impact test were applied for both feet designs to observe the behavior
... Show MoreThe objective of this research is to study experimentally and theoretically the girder vertical load share of the curved I-Girder bridges subjected to the point load in addition to the self-weigh and supper imposed dead loads. The experimental program consist of manufacturing and testing the five simply supported bridge models was scaled down by (1/10) from a prototype of 30m central span. The models carriageway central radii are 30 m, 15m or 10m. The girder spacing of the first two models is 175 mm with an overall carriageway width of 650mm. The girder spacing of the other three bridge models is 200mm with the overall carriageway width of 700 mm. The overall depth of the composite section was 164 mm. To investigate the effect of live load
... Show More