Preferred Language
Articles
/
ZxdjY48BVTCNdQwCAnW4
Detection of human leukocyte antigen and celiac disease auto antibodies in serum of patients with multiple sclerosis
...Show More Authors

To determine the important pathogenic role of celiac disease in triggering several autoimmune disease, thirty patients with Multiple Sclerosis of ages (22-55) years have been investigated and compared with 25 healthy individuals. All the studied groups were carried out to measure anti-tissue transglutaminase antibodies IgA IgG by ELISA test, anti-reticulin antibodies IgA and IgG, and anti-endomysial antibodies IgA and IgG by IFAT. There was a significant elevation in the concentration of anti-tissue transglutaminase antibodies IgA and IgG compared to control groups (P≤0.05), there was 4(13.33%) positive results for anti-reticulin antibodies IgA and IgG , 3(10%) positive results for anti-endomysial antibodies IgA and IgG . There were 4 positive results (13.33%) for HLA-DQ8 by using HLADQ8 Real-Time PCR test. These results indicated that patients with celiac disease play an important role in pathogenesis of Multiple Sclerosis.

Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 30 2025
Journal Name
Iraqi Journal Of Science
The Prognostic Value for Tissue Inhibitor of Metalloproteinase-2 and Fatty Acid-Binding Protein-1 as Biomarkers for Chronic Kidney Disease
...Show More Authors

Globally, chronic kidney disease (CKD) has emerged as a significant public health concern, characterized by high rates of morbidity and mortality. To assess the risk of kidney damage, researchers have identified tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) and fatty acid-binding protein-1 (FABP-1) as valuable biomarkers. This study aims to analyse the effectiveness of specific biomarkers in assessing CKD and its associated mechanisms in Iraqi patients. The study was conducted from December 2023 to May 2024. Ninety subjects, aged 48–65 years; including 60 patients with CKD (38 male and 22 female) attended the Baghdad Teaching Hospital/ Medical City/ Dialysis Unit- Baghdad, Iraq. In addition, 30 healthy people (15 male an

... Show More
View Publication
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Al-kindy College Medical Journal
Adenoidectomy with Myringotomy and Tympanostomy Tube Versus Adenoidectomy with Myringotomy in Treatment of Otitis Media with Effusion in 5-7 Years Old Children
...Show More Authors

Background: Adenoiditis is a common cause of otitis media with effusion (OME) in children & perhaps OME is one of the most common diseases leads to hearing impairment in children with subsequent impairment of speech development & learning difficulties , however, treatment remains controversial. Objectives: To evaluate if there is a significant advantage of tympanostomy tube insertion in association with adenoidectomy over adenoidectomy in association with myringotomy alone in treatment of children with OMEType of the study: This is a prospective study. Patients & methods: The study consisted from 63 children diagnosed as cases of bilateral OME & variable degrees of adenoid hypertrophy. The patients were divided randomly i

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Anais Da Academia Brasileira De Ciências
Molecular characterization of viruses associated to leaf curl disease complex on zucchini squash in Iraq reveals Deng primer set could distinguish between New and Old World Begomoviruses
...Show More Authors

View Publication
Scopus (15)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun May 11 2014
Journal Name
World Journal Of Experimental Biosciences
Detection of hydrolytic enzymes produced by Azospirillum brasiliense isolated from root soil
...Show More Authors

Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (44)
Crossref (34)
Scopus Clarivate Crossref