Soil water use and water storage vary by vegetative management practices, and these practices affect land productivity and hydrologic processes. This study investigated the effects of agroforestry buffers (AB), grass buffers (GB), and biofuel crops (BC), relative to row crops (RC) on soil water use for a claypan soil in northern Missouri, USA. The experiment located at the Greenley Memorial Research Center included RC, AB, GB, and BC established in 1991, 1997, 1997, and 2012, respectively. Soil water reflectometer sensors installed at 5‐, 10‐, 20‐, and 40‐cm depths monitored soil water from April to November in 2017 and 2018. Results showed significant differences in weekly volumetric water content (VWC) among treatments for all four soil depths in 2017 and 2018. Treatments of AB, GB, and BC had lower VWC (16, 37, and 18% on 9 June), (31, 35, and 20% on 18 August), and (43, 49, and 35% on 29 September) in 2017 and (46, 70, and 19% on 24 August) and (31, 34, and 17% on 5 October) in 2018, respectively, in the pre‐recharge periods for the 5‐cm depth compared with the RC. In the post‐recharge period, equal or occasionally slightly higher soil water occurred in the buffer and biofuel treatments compared to the RC. During recharge, larger increases in soil water due to better infiltration were observed in the perennial vegetative practices relative to RC. The results showed that these practices could significantly influence soil water use and storage compared to RC management, especially for eroded claypan landscapes.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreThis paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreThe educational function of television is one of the basic functions in light of the technical development that included the specialized satellite channels in all its fields, including the educational field, as its role became parallel to the role of educational institutions. These studies are among the descriptive studies in terms of the type of study methodology that describes the phenomenon, interprets its and extract the results and relationships between the variables. The study sample was multistage (random and intentional) included the students of the sixth academic and literary preparatory stage in the city of Baghdad.
The study problem was summarized by the following main question:
( What are the motives for the exposure of
In this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err
... Show MoreSchool administration has an effective role in stimulating academic achievement, as it is the ideal regulation and activation of material and human power to achieve the goals of the educational process. This role has axes in the form of interests, aids, and specific procedures exercised by the school administration in improving the educational process, and assisting researchers in achieving the highest levels of academic achievement. This activation is achieved through stages of planning, organizing, coordinating, and evaluating.
To achieve the aims of this research, the researcher pursued the descriptive analytical approach, which is considered one of the most appropriate approaches to the nature of this type of research. The qu
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreAbstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More