This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently, the beams that exposed to be cool gradually under the ambient laboratory condition, after that, the beams were loaded till failure to investigate the influence of the heating temperature on the performance during the serviceability and the failure stage. It was observed that, as the temperature increased in the internal layers of concrete, the camber of tested beams increased significantly and attained its peak value at the end of the time interval of the stabilization of the heating temperature. This can be attributed to the extra time that was consumed for the heat energy to migrate across the cross-section and to travel along the span of the beam and deteriorate the texture of the concrete causing microcracking with a larger surface area. Experimental findings showed that the load-carrying capacity of the test specimen, with the same number of incorporated concrete segments, was significantly decreased as the heating temperature increased during the fire event.
Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreA composite section is made up of a concrete slab attached to a steel beam by means of shear connectors. Under positive and negative bending moment, part of the slab will act as a flange of the beam, resisting the longitudinal compression or tension force. When the spacing between girders becomes large, it is evident that the simple beam theory does not strictly apply because the longitudinal stress in the flange will vary with distance from the girder web, the flange being more highly stressed over the web than in the extremities. This phenomenon is termed "shear lag". In this paper, a nonlinear three-dimensional finite element analysis is employed to evaluate and determine the actual effective slab width of the composite steel-concrete
... Show MoreIn this work, the behavior of reinforced concrete columns under biaxial bending is studied. This work aims at studying the strengthening of columns by using carbon fiber reinforced polymer (CFRP). The experimental work includes investigation of eight reinforced concrete columns (150*150*500mm) tested under several load conditions. Variables considered in the test program include; effect of eccentricity and effect of longitudinal reinforcement (Ø12mm or Ø6mm). Test results are discussed based on load – lateral deflection behavior, load –longitudinal deflection behavior, ultimate load and failure modes. The CFRP reinforcement permits
a complete change in the failure mode of the columns .The effect of longitudinal reinforcement in
This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu
... Show MoreThe issue of the research lies in the non-representation of the models developed for the communication process in the interaction and networking processes through social media, as the research sought to build a network model of communication according to the specific data and features of social media platforms in order to reach a special generalization to understand how the process of networking operates in cyberspace.
The researcher followed the analytical survey approach as she described the communication models outwardly in order to be able to build a networked communication model that represents the flow of post-reactive communication. Therefore, it has been named "Nebula - Sadeem" after the concept of post-space and cosmic g
... Show MoreObjectives: To determine the effectiveness of post-abortion family planning counseling program on nurses and midwives' practices and to predict the variables which may effect on their practices Methodology: A quasi experimental study was conducted from 23th April 2017 to 14th March 2018 in three governorates in Middle Euphrates of Iraq: (Holy Karbala, Al - Najef Al Ashraf and Babylon) on nurses and midwives who work at maternity hospitals. Systematic random sampling was used to select 122 nurses and midwives, (60) of them for study group and (62) for control group. A checklist is an instrument that evaluate the practices which included 50 items. Validity of content was determined through reviewing it by (16) experts and reliability of to
... Show MoreThe research has tackled about an important transformation within the whole region of middle east, especially there were more challenges which revealed under the huge pivotal interests of global powers that ruled the new world order by United states of America ; being very affected over the international and regional relations than any situations appeared previously within political realities. So that, many of variables inside the international scene which happened during of this period of contradicting strategic policies by the process of reforming and restructuring of difficult equations that imposed by international and regional allies and blocs . This article had concentrated over various strategic and political studies which reflect
... Show MoreBackground: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show More