This study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells leading to apoptosis revealed a considerable rise in nuclear concentration, cytochrome c, and cell membrane permeability (dose-dependent). The bright green chromatin in DOX-treated cells was compacted or broken up, indicating an early stage of apoptosis. However, cells treated with the CS-AgNPs-DOX-FA compound displayed orange nuclei and late stage apoptosis. The findings demonstrated that A549 lung cancer cells are cytotoxic to Cs-Ag NPs-DOX-FA. The Cs-Ag NPs-DOX-FA MTT assay demonstrated that the harmful effect of 25 µg/mL on A549 cells is dose-dependent, and a rise in nuclear intensity, membrane permeability, and cytochrome were observed. Cell viability also declined, and the potential of the mitochondrial membrane changed. The fact that the release of DOX was delayed shows that nanoparticles in drug carriers may be used to reduce the exposure of healthy tissues; however, boosting the accumulation to therapeutic medicine in the tumor site.
Various of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Introduction: Diabetic foot infections are one of the most severe complications of diabetes. This study was aimed to determine the common bacterial isolates of diabetic foot infections and the in vitro antibiotic susceptibility then treatment.
Methods: A swab was taken from the foot ulcer, and the aerobic bacteria were isolated and identified by cultural, microscopic and biochemical test, then by api-20E system. After that their antibiotic susceptibility pattern was determined. Then local and systemic treatment was used to treat the diabetic foot patients.
Results: Bacterial isolates belonging to twelve species were obtained from diabetic foot patients. Gram (-) bacteria were the predominant pathogens in the diabetic foot infection
Background: Several pathologies of the oral cavity have been associated with stress. Dental students need to gain assorted proficiencies as theoretical knowledge, clinical proficiencies, and interpersonal dexterity which is accompanied with high level of stress. Uric acid is the major antioxidant in saliva. The aim of this study is to assess the dental caries experience among dental students with different levels of dental environment stress in relation to physicochemical characteristics of whole unstimulated saliva.
Materials and Methods: the total sample is composed of 300 dental students (73 males, 227 female) aged 22-23 years old, from collage of dentistry / university of Baghdad, from the 4t
... Show MoreThe structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.
Biomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreA novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
antimicrobial solutions against Coliforms, E. coli O157: H7, yeasts and molds were evaluated by agar well diffusion method. Chitosan (CH) exhibited best antimicrobial activity against the treated microorganisms at concentration of (5%) with contact time for 6hrs at refrigeration temperature (4ÚC), zones of inhibition for (GA) and (CH) for each solution alone ranging from (0 to 10 mm), chitosan solution (CH) exhibited both antibacterial and antifungal activities, Gum Arabic washing solution showed significant antibacterial activity (P < 0.05) against the microorganisms at concentration (15%), without inhibitory effect against E. coli O157:H7 at concentration (10%), in the current study the results confirmed that (15%) (w/v) of GA and 5%
... Show MoreAbstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show More