Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state will generate only one in next state that will make the search slower and the drawback is that the search may fall in local minimum which represents the best solution in only part of the solution space. In order to enhance its performance and alleviate the deficiencies in the problem solving, a modified (MD) is proposed. We attempt to augment the search space by starting with solutions, instead of one solution. To analyses and investigate the operations of the MSA with the standard and harmony search (HS), the real performance of an industrial company and simulation are made for evaluation. The results show that, compared to and , offers better quality solutions with regard to convergence and accuracy.
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreIncreasing the variety of products that are being designed with sculptured surfaces, efficient machining of these surfaces has become more important in many manufacturing industries. The objective of the present work is the investigation of milling parameters for the sculptured surfacesthat effecting of surface roughness during machining of Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The influence of the selected variables on the chosen characteristics have been accomplished using Taguchi design approach, also ANOVA had been utilized to evaluate the contributionsof each parameter on proc
... Show MoreAbstract:
The use of economic resources enjoyed Iraq by especially oil resources, which constitute the main source of financial revenue, would the economic surplus outside the oil sector increases by mobilizing and rallying the labor power and turn it into an access capitalism, , was the cause of "the inaction of the productive sectors of the economy, made the investment planning process and even investment in human capital was not rationality with the increasing number of unemployed, particularly certificates and specializations high campaign, direction of the government towards market liberalism after 2003 through the, was focused not follow a clear economic policies, and the absence of planning
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreOver the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show MoreThe paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show More