Preferred Language
Articles
/
ZRe4UJEBVTCNdQwCt5Qi
Load balance in data center SDN networks
...Show More Authors

In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs.

Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Robust M Estimate With Cubic Smoothing Splines For Time-Varying Coefficient Model For Balance Longitudinal Data
...Show More Authors

In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of  specific time points (m)،since the frequent measurements within the subjects are almost connected an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Intelligent Systems
Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks
...Show More Authors
Abstract<p>Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co</p> ... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Feb 27 2023
Journal Name
Applied Sciences
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an

... Show More
View Publication
Scopus (15)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Dec 19 2024
Journal Name
Ieee Explorer
A Novel Flow Priority and Continuity Control Mechanism in SDN Network
...Show More Authors

In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p

... Show More
View Publication
Crossref
Publication Date
Wed Feb 20 2019
Journal Name
Political Sciences Journal
International relations between balance of power and balance of threat (theoretical framework)
...Show More Authors

The international order have been changed during the modern and contemporary history, and however those changing in international order doesn't go to beyond several concepts such as " balance of power";" conflict"; "power" and " threaten", which all those are depending on the fundamentals or basic terms which was called " power" or" hard power". In this time, we can say that the political relations among the effective units could be analyzed according to the concept of " balance of threaten" instead of the classic concept which had called " balance of power" that the scholars used to describe the international relations . In conclusion , the concept of " balance of threaten" has a significant importance in the studies of the internationa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Requirements for achieving financial balance in Iraq
...Show More Authors

The deficit of the federal budget and the structural imbalances suffered by the Iraqi economy has affected the direction of research towards suggesting steps and mechanisms can be relied upon in the near term to form a broader base of non-oil revenues aimed at achieving a balanced budget, and to proceed to reform the financial situation, In reducing their financial dictates, whether capital or operational, which lead to significant financial and economic consequences. This also requires that the Iraqi political elite have the real will, strategic vision and full awareness that the implementation of these reforms has potential social and economic effects, with long-term measures to be taken. The aim is not only to reform the finan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network
...Show More Authors

Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification

... Show More
View Publication Preview PDF
Crossref (2)
Crossref