In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs.
This study tackles the contribution of the environmental audit in achieving the sustainability of the environmental balance in the Sudanese business environment. The study aimed at clarifying the role of environmental auditing in supporting sustainable development, and to recognize the role of environmental audit in urging businesses to abide by environmental protection. It also shows how effective the environmental audit reports are, in providing the reliable data for the concerned authorities, in order to use it in making the decisions that would help in the sustainability of the environmental balance. To achieve the goals of the study, a questionnaire was developed and distributed to the registered chartered accountants in Sud
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThe research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show MoreIn this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show More