Preferred Language
Articles
/
ZRdnMI8BVTCNdQwCBV8p
Iris Data Compression Based on Hexa-Data Coding
...Show More Authors

Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the original image. A lossless Hexadata encoding method is then applied to the data, which is based on reducing each set of six data items to a single encoded value. The tested results achieved acceptable saving bytes performance for the 21 iris square images of sizes 256x256 pixels which is about 22.4 KB on average with 0.79 sec decompression  average time, with high saving bytes performance for 2 iris non-square images of sizes 640x480/2048x1536 that reached 76KB/2.2 sec, 1630 KB/4.71 sec respectively, Finally, the proposed promising techniques standard lossless JPEG2000 compression techniques with reduction about 1.2 and more in KB saving that implicitly demonstrating the power and efficiency of the suggested lossless biometric techniques.

Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Investigating the quality of open street map roads data inside Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 06 2022
Journal Name
Kuwait Journal Of Science
AVO analysis for high amplitude anomalies using 2D pre-stack seismic data
...Show More Authors

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution under Type-I Censored Data
...Show More Authors

     This paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Hiding Data in Color Image Using Least Significant Bits of Blue Sector
...Show More Authors

Concealing the existence of secret hidden message inside a cover object is known as steganography, which is a powerful technique. We can provide a secret communication between sender and receiver using Steganography. In this paper, the main goal is for hiding secret message into the pixels using Least Significant Bit (LSB) of blue sector of the cover image. Therefore, the objective is by mapping technique presenting a model for hiding text in an image. In the model for proposing the secret message, convert text to binary also the covering (image) is divided into its three original colors, Red, Green and Blue (RGB) , use the Blue sector convert it to binary,  hide two bits from the message in  two bits of the least significant b

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Mathematical Modelling
Identification of a multi-dimensional space-dependent heat source from boundary data
...Show More Authors

View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Temperatture esttiimattiion off EXDRA and SSUMI dwarff Nova systtems from spectroscopic data
...Show More Authors

The seasonal behavior of the light curve for selected star SS UMI and EXDRA during outburst cycle is studied. This behavior describes maximum temperature of outburst in dwarf nova. The raw data has been mathematically modeled by fitting Gaussian function based on the full width of the half maximum and the maximum value of the Gaussian. The results of this modeling describe the value of temperature of the dwarf novae star system leading to identify the type of elements that each dwarf nova consisted of.

View Publication Preview PDF
Crossref