Background: Cartilage forms most of the temporary skeleton of the embryo and provides a model in which most bones develop Objective: Using laser therapy to enhance autologous cartilage grafts expansibility and to analyze whether this "enhancement" results in reduced rates of cartilage resorption and greater preservation of normal architectural features compared with "unenhanced" grafts. Type of the study: Cross sectional study. Methods: 24 New Zealand rabbits were divided into two groups (control and treated with 904nm, 10mW diode laser). Auricular cartilage segments measuring 1 cm2 were harvested from both ears of each rabbit, and were implanted in to the subcutaneous region of the left flank. 3 rabbits from each group were anaesthetized at 3, 6, 9 and 12 weeks post operation, implanted cartilages were then peeled. Gross and microscopic examinations were performed to assess size, structural integrity, and architectural features, with comparisons performed between each of the conditions. The results were assessed using T – test. Results: Grafts of control group were softer, more pliable when compared with grafts treated with laser irradiation. The rate of healing, and the quality of the cartilage is more enhanced in the treated group. The mean areas of the harvested cartilage grafts treated with laser therapy were 1.17 cm2 , 1.34 cm2 , 1,64 cm2 and 1.76 cm2 respectively, while the corresponding value for the untreated specimens was 0.95 cm2 , 0,99 cm2, 1.05 cm2 and 1.08 cm2. The percentage of decrease in size was 14% for the untreated specimens and 0% for the specimens treated with laser therapy for all cases. Conclusions: Our findings demonstrated significant improvements in graft quality using laser therapy. These findings may justify changes in how cartilage grafts are prepared and delivered for facial augmentation procedures to reduce graft resorption and maintain the structural integrity of the cartilage.
This paper reports on the laser emission properties of the BBQ dye in poly (methyl meth-acrylate)(PMMA). This host material combines the advantages of an organic environment for dye with the thermoptical mechanical properties of an organic dye. A BBQ dye solid solution in PMMA polymer. A nitrogen laser in untuned laser cavity has pumped thin films. We developed the concentration and the thickness to get high efficiency. The laser efficiency had been increased from 7% at thickness 1.5 m to 16.5% at thickness 3.5m, and from 1% to 10% when concentration increased from 1x10-5M to 1x10-3 M
Four photosensitizers were used to test inhibitory effect of Helicobacter pylori bacteria using
low power helium: neon red laser radiation. Biopsies were collected from 176 patients and H. pylori were
isolated, identified and bacterial suspension was prepared. Samples of this suspension were mixed with
various low concentrations of the test sensitizer. The mixture samples were exposed to different laser
radiation doses. The samples were then inoculated and the inhibition zones were studied and compared
with their analogues of control samples. The most effective sensitizer with optimum concentration and
irradiation dose was determined. Statistical analysis of results was performed. The sensitizers' toluidine
blue and
This paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
This study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with th
... Show MoreA new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show More