Preferred Language
Articles
/
ZRaooIgBVTCNdQwC-XkY
Laser Diode Enhances Autologous Cartilage Graft's Expansibility
...Show More Authors

Background: Cartilage forms most of the temporary skeleton of the embryo and provides a model in which most bones develop Objective: Using laser therapy to enhance autologous cartilage grafts expansibility and to analyze whether this "enhancement" results in reduced rates of cartilage resorption and greater preservation of normal architectural features compared with "unenhanced" grafts. Type of the study: Cross sectional study. Methods: 24 New Zealand rabbits were divided into two groups (control and treated with 904nm, 10mW diode laser). Auricular cartilage segments measuring 1 cm2 were harvested from both ears of each rabbit, and were implanted in to the subcutaneous region of the left flank. 3 rabbits from each group were anaesthetized at 3, 6, 9 and 12 weeks post operation, implanted cartilages were then peeled. Gross and microscopic examinations were performed to assess size, structural integrity, and architectural features, with comparisons performed between each of the conditions. The results were assessed using T – test. Results: Grafts of control group were softer, more pliable when compared with grafts treated with laser irradiation. The rate of healing, and the quality of the cartilage is more enhanced in the treated group. The mean areas of the harvested cartilage grafts treated with laser therapy were 1.17 cm2 , 1.34 cm2 , 1,64 cm2 and 1.76 cm2 respectively, while the corresponding value for the untreated specimens was 0.95 cm2 , 0,99 cm2, 1.05 cm2 and 1.08 cm2. The percentage of decrease in size was 14% for the untreated specimens and 0% for the specimens treated with laser therapy for all cases. Conclusions: Our findings demonstrated significant improvements in graft quality using laser therapy. These findings may justify changes in how cartilage grafts are prepared and delivered for facial augmentation procedures to reduce graft resorption and maintain the structural integrity of the cartilage.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Effect of CO2 Laser Irradiation on the Topographic and Optical Properties of CdO Thin Films
...Show More Authors

     In this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption s

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 28 2026
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of thermocycling and debonding time on the shear bond strength of different orthodontic brackets bonded with light-emitting diode adhesive (In vitro study)
...Show More Authors

Background: Thermocycling simulates the temperature dynamics in the oral environment. This in vitro study done to measure and compare the effect of thermocycling on the shear bond strength of stainless steel and sapphire brackets bonded to human enamel teeth using light cured orthodontic adhesive and debonded at various time, and to measure adhesive remnant index after debonding. Materials and Methods: one-hundred-twenty extracted upper first premolars for orthodontic reason were used in this study; depending on weather thermocycled or not, the sample was divided into two main groups, then within each group 30 teeth were used for stainless-steel brackets (Bionic®) and for sapphire brackets (Pure®). Both groups were subdivided into three

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Immobilization of Nuclear Waste Using Carbon Nanotubes Prepared by Laser Ablation in Liquid Method
...Show More Authors

In an attempt to disposal from nuclear waste which threats our health and environments. Therefore we have to find appropriate method to immobilize nuclear waste. So, in this research the nuclear waste (Strontium hydroxide) was immobilized by Carbon nanotubes (CNTs).  The Nd-YAG laser with wave length 1064 nm, energy 750 mJ and 100 pulses used to prepare CNTs. After that adding Sr(HO)2 powder to the CNTs colloidal in calculated rate to get homogenous mixing of CNTs-Sr(OH)2. The Sr(HO)2 absorbs carbon dioxide from the air to form strontium carbonate so, the  new solution is CNTs-SrCO3. To dry solution putting three drops from the new solution on the glass slides. To investigate the radi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Effect of Nd-YAG, XeCl, and Nitrogen Laser Radiation on Human Aorta , and Some Arterial Tissues
...Show More Authors

The effect of laser radiation on human aorta, coronary, and pulmonary arteries, and pulmonary veins has been investigated. Xenon-Chloride (eximer), Nitrogen, and Nd-YAG pulsed lasers of wavelengths 308, 337, and 1060 nm respectively were used. Their effects on fresh postmortem tissues, normal and diseased, was studied. The diameter and depth of ablation of the exposed tissues, in air, were measured as a function of many factors related to the type of laser and nature of the tissue. The effect of properties of the applied lasers, such as average power density and deposited energy density, on the exposed tissue surface were studied. The increase of these two parameters cause an increase in the depth and diameter of ablation. However the di

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Journal Of Materials Engineering And Performance
High Speed Shock Peening by Fiber Laser for Al Alloy 6061-T6 Thin Sheets
...Show More Authors

Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Heating and Melting Model Induced by Laser Beam in Solid Material
...Show More Authors

An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by  laser irradiation is in good agreement with numerical results.

View Publication Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
Journal Of Physical Vapor Deposition Science And Technology (jpvdst)
Physical Properties of Nanostructured Silicon Dioxide Prepared by Pulsed-Laser Deposition
...Show More Authors

Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Nonlinear Optical Physics & Materials
SPECTRAL WIDTH VARIATION OF ULTRASHORT LASER PULSES IN MONOMODE OPTICAL FIBERS
...Show More Authors

Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Gamma Ray Effect on the Properties of Coumarin C47 Laser Dye
...Show More Authors

The research is concerned about studying the absorption spectrum of the solution coumarin dye C47. The chloroform solvent was used with C47 dye in three different concentrations 10-4, 10-5 and 10-6 M. The laser dye solution was prepared by dissolving the required amount of dye in chloroform alcohol, while studying absorption spectrum before and after irradiation with gamma ray by cobalt-60 source 60Co at exposure time, which are 0, 4, 6 and 18 hours with different absorbed doses 0, 136, 204 and 612 Gy. The results show that red shift in the absorption spectrum was increased by increasing the concentration of laser dye solutions , while the increase of gamma dose led to increase the red shift after irradiation, as the exposure period and irr

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Thu Jan 23 2020
Journal Name
Iraqi Journal Of Laser
Fractional CO2 Laser Treatment of Mild Periorbital Wrinkles in Iraqi Patients
...Show More Authors

Background and Objective: Public demand for procedures to rejuvenate photodamaged facial skin have stimulated the use of fractional CO2 laser as a precise and predictable treatment modality. The purpose of this study was to assess the effect of fractional CO2 laser system for reducing periorbital rhytids.

Materials and Methods: twenty seven subjects with mild periocular wrinkles, and photoaged skin of the face were prospectively treated two to three times (according to clinical response) in the periorbital area with a fractional CO2 laser device equipped with a scanning hand piece. Improvements in eyelid wrinkles was evaluated clinically and photographically. Subjects also scored satisfaction and

... Show More
View Publication Preview PDF